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Abstract 
 

  The aim of this paper is to introduce a new representation of dihedral group Dn of degree n as a 

group of residue classes and study its properties. We find the (N,M)-th Commutativity degree 𝑃𝑁
𝑀(𝐷𝑛) for all 

positive integers N, M and n. 𝑃𝑁
𝑀(𝐷𝑛)  is the probability of a random pair (x,y) of  𝐷𝑛 × 𝐷𝑛 so that 

N M M Nx y y x . Let 𝐷𝑛
𝐾 = {𝑎𝐾|𝑎 ∈ 𝐷𝑛}  for a positive integer K. Further We find the relative (N,M)-th 

commutativity degree    , ,M N M

N n n n nP D D P D D for all positive integers N, M and n. 𝑃𝑁
𝑀(𝐷𝑛, 𝐷𝑛)  is the 

probability that a random element of N

nD  commutes with a random element of 𝐷𝑛
𝑀 . Finally We find all 

subgroups, all normal subgroups, the center and the commutator subgroup of  𝐷𝑛. 

1. Introduction 

Conrad [4]1 defined dihedral group Dn as a result of reflection and rotation operations. All the properties 

of Dn are proven by geometry approach. In this paper, We represent Dn as a group of residue classes. Then it 

becomes very easy to study any property of Dn. Erodos and Turan [8], and, Gustofson [9] introduced the concept 

of the commutativity degree P(G). P(G) is the probability that a random element of G commutes with a random 

element of G. Sarmin and Mohamad [7] extended the concept of the commutativity degree P(G) as the N-th 

                                                           
1 Mathematics Subject classification (2010). 20F17, 20B35, 20B05,20K27. 
Key words and Phrases. Dihedral group. Residue Classes, N-th commutativity degree, relative  commutativity degree, Equivalence 
relation. 
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commutativity degree 𝑃𝑁(𝐺) for a positive integer N. 𝑃𝑁(𝐺) is the probability of a random pair ( , )x y  of G×G 

so that N Nx y yx . Ali and Sarmin [6], and, Azizi and Dostie [2] defined the same 𝑃𝑁(𝐺). In this paper, We 

extend the concept of the N-th commutativity degree 𝑃𝑁(𝐺) as the (N,M)-th commutativity degree ( )M

NP G  for 

positive integers N and M. ( )M

NP G  is the probability of a random pair ( , )x y  of G×G so that N M M Nx y y x . 

Sarmin and Mohamad [7], and, Ali and Sarmin [6] obtained 𝑃𝑁(𝐷4)  for all N. Abdul Hamid [5] obtained P(Dn), 

and, Azizi and Dostie [2] obtained PN(Dn), for all N and n. In this paper, We find ( )M

N nP D  for all N, M and n. 

Erfanian and Rezaei [1] introduced the concept of the relative commutativity degree P(H, G) of a subgroup H 

of a finite group G. P(H,G) is the probability that a random element of H commutes with a random element of 

G. Let 𝐺𝑁 = {𝑎𝑁|𝑎  ∈  𝐺} for a positive integer N. Yahya et all [10] used same 𝑃𝑁(𝐺) defined by Sarmin and 

Mohamad [7]. They [10] expressed 𝑃𝑁(𝐺) by the equation 𝑃𝑁(𝐺) = |{(𝑥, 𝑦) ∈ 𝐺 × 𝐺|𝑥𝑁𝑦 = 𝑦𝑥𝑁}|/(|𝐺|2). 

But to prove ( )N nP D  they [10] did not use this equation. Their [10] proof for ( )N nP D can be obtained by using 

the equation 𝑃𝑁(𝐺) = |{(𝑥, 𝑦) ∈ 𝐺𝑁 × 𝐺|𝑥𝑦 = 𝑦𝑥}|/(|𝐺𝑁||𝐺|)  which is the relative commutativity degree 

 ,NP G G . We define  ,NP G G as the relative N-th commutativity degree and denote it by  𝑃𝑁(𝐺, 𝐺). Yahya 

et all [10] obtained  ,N n nP D D  for all N and for some dihedral groups 
nD  upto degree 12n  . In this paper 

We extend the concept of the relative N-th commutativity degree  ,NP G G  as the relative (𝑁, 𝑀) − 𝑡ℎ 

commutativity degree    , ,M N M

NP G G P G G  for Positive integers N  and M .  ,M

NP G G  is the probability 

that a random element of 
NG  commutes with a random element of 

MG . In this paper We find 𝑃𝑁
𝑀(𝐷𝑛, 𝐷𝑛) for 

all N, M and n. Then 𝑃𝑁
𝑀(𝐷𝑛) 𝑎𝑛𝑑 𝑃𝑁

𝑀(𝐷𝑛, 𝐷𝑛)  are improvements of 𝑃𝑁 (𝐷𝑛 )(𝑜𝑟 𝑃(𝐷𝑛 ))  and 

𝑃𝑁 (𝐷𝑛 , 𝐷𝑛 )(𝑜𝑟 𝑃(𝐷𝑛 ))  respectively. Finally we find all subgroups, all normal subgroups, the center and the 

commutator subgroup of 𝐷𝑛 . 

 

 

2. Preliminaries 

Definition 2.1 [4,3]. Dihedral group Dn for n ≥ 3 is defined as the rigid motions taking a regular n-gon back 

to itself, with operation being composition and obtained Dn as following : 

(i) 𝐷𝑛 = {1, 𝑥, 𝑥2, … … , 𝑥n-1, 𝑦, 𝑦𝑥, 𝑦𝑥2, … … , 𝑦𝑥n-1}, 
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(ii) 𝑦2 = 1, 𝑥𝑛 = 1 = 𝑥0, 𝑥𝑦 = 𝑦𝑥−1, 𝑥𝑖𝑦 = 𝑦𝑥−𝑖 and |𝐷𝑛| = 2𝑛 . 

Definition 2.2 [8]. The commutativity degree P(G) of a finite group G is defined by 

P(G) =|{(𝑥, 𝑦) ∈ 𝐺 × 𝐺|𝑥𝑦 = 𝑦𝑥}|/(|𝐺|2). 

Definition 2.3 [2,6,7]. The N-th commutativity degree PN(G) of a finite group G is defined by  

PN(G) = |{(𝒙, 𝒚) ∈ 𝑮 × 𝑮|𝒙𝑵𝒚 = 𝒚𝒙𝑵}|/(|𝑮|𝟐). 

Definition 2.4 [1].  The relative commutativity degree P(H,G) of a subgroup H of a finite group G is defined 

by 𝑃(𝐻, 𝐺) = |{(𝑥, 𝑦) ∈ 𝐻 × 𝐺|𝑥𝑦 = 𝑦𝑥}|/(|𝐻||𝐺|). 

Definition 2.5 [10]. The N-th commutativity degree PN(G) in [10] can be replaced by the relative N-th 

commutativity degree 𝑃𝑁(𝐺, 𝐺) = 𝑃(𝐺𝑁 , 𝐺). 𝑃𝑁(𝐺, 𝐺) is the probability that a random element of GN 

commutes with a random element of G given by 

𝑃𝑁(𝐺, 𝐺) = 𝑃(𝐺𝑁 , 𝐺) = |{(𝑥, 𝑦) ∈ 𝐺𝑁 × 𝐺|𝑥𝑦 = 𝑦𝑥}|/(|𝐺𝑁||𝐺|). 

Definition 2.6 [3]. A relation ~ on Z is called an equivalence relation on Z if  

(i) 𝑎~ 𝑎 ∀(𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦)𝑎 ∈ 𝑍,              (𝑖𝑖)  𝑎~𝑏 ⇒ 𝑏~𝑎 and (iii)   𝑎~𝑏  𝑎𝑛𝑑  𝑏~𝑐 ⇒ 𝑎~𝑐. 

Theorem 2.7 [3]. An equivalence relativon ~ on a set Z decomposes Z into disjoint equivalence classes and 

[a] = [b] if and only if  a~b. Where [x] denotes the equivalence class by 𝒙 ∈ 𝒁. 

3. Representation Of Dihedral  Group  

As A Group Of Residue Classes 

 
Definition 3.1. Let Z be the set of integers and 2n be a positive integer. Let 𝑎, 𝑏 ∈ 𝑍.  We define a relation 

~ on Z by   

𝑎~𝑏 ⟺ 2𝑛  𝑑𝑖𝑣𝑖𝑑𝑒𝑠 (𝑎 − 𝑏) ⟺ 𝑎 − 𝑏 = 2nq  for some 𝑞 ∈ 𝑍.  

 

Then ~ is called the relation of congruent modulo 2n and We write 𝑎 ≡ 𝑏(𝑚𝑜𝑑 2𝑛). 

Lemma 3.2. The relation ~ of congruent modulo 2n is an equivalence relation on Z. 

Proof.  Let 𝑎, 𝑏, 𝑐 ∈ 𝑍. We can write a – a = 2n(0). Then from definition 3.1, We get 𝑎~𝑎. Let 𝑎~𝑏. Then from 

definition 3.1, We get a – b = 2nq for some 𝑞 ∈ 𝑍, implies 𝑏 − 𝑎 = 2𝑛(−𝑞), implies 𝑏~𝑎.  Let 𝑎~𝑏 and 𝑏~𝑐. 

Then from definition 3.1, We get 𝑎 − 𝑏 = 2𝑛𝑞1 𝑎𝑛𝑑  𝑏 − 𝑐 = 2𝑛𝑞2 for some 𝑞1, 𝑞2 ∈ 𝑍, implies 𝑎 − 𝑏 + 𝑏 −

𝑐 = 2𝑛𝑞1 + 2𝑛𝑞2, implies 𝑎 − 𝑐 = 2𝑛(𝑞1 + 𝑞2),  implies 𝑎~𝑐. It follows that ~ is an equivalence relation on 

Z.  
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Definition 3.3.   Let 𝑎 ∈ 𝑧 and ~ be the relation of congruent modulo 2n. Let 

[𝑎] = {𝑥 ∈ 𝑧|𝑥~𝑎}.  

Then [a] is called equivalence class by a.  [a] is also called residue class modulo 2n by a. We can also denote 

residue class modulo 2n by [𝑎]𝑛.  

Lemma 3.4. The relation ~ of congruent modulo 2n On  Z decomposes Z into disjoint residue classes.  

Proof. The proof follows from lemma 3.2, definition 3.3 and the fact that an equivalence relation decomposes 

a set into disjoint equivalence classes.  

Lemma 3.5. Let 𝒂, 𝒃 ∈ 𝒁. Let [a] and [b] be the residue classes modulo 2n. Then, 

[𝒂] = [𝒃] ⟺ 𝟐𝒏 divides (𝒂 − 𝒃) ⟺ 𝒂 − 𝒃 = 𝟐𝒏𝒒  for some 𝒒 ∈ 𝒁. 

Proof.  Let 𝑎, 𝑏 ∈ 𝑍. 𝑆𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ~ of congruent modulo 2n is an equivalence relation so [𝑎] = [𝑏] ⟺

a~b. Then the proof follows from definition 3.1. 

Lemma 3.6.  Let ~ be the relation of congruent modulo 2n on Z. Then, 

(i) 𝑎 ∈ 𝑍 ⟹ [a] = [r], for some 0 ≤ 𝑟 < 2𝑛, 

(ii) 0 ≤ 𝑟, 𝑠 < 2𝑛, 𝑟 ≠ 𝑠 ⟹ [𝑟] ≠ [𝑠], 

(iii) for all 𝑘, 𝑎 ∈ 𝑍, [2𝑘𝑛 + 𝑎] = [𝑎] = [𝑟] ∈ 𝑍2𝑛, for some 0 ≤ 𝑟 < 2𝑛, and 

(iv) for all k,  [2kn] = [2n] = [0]. 

Proof.  

(i) Let 𝑎 ∈ 𝑍. Then by division algorithm, We get 𝑎 = 2𝑛𝑞 + 𝑟 for some 𝑞 ∈ 𝑍  and 0 ≤ 𝑟 < 2𝑛, 

implies 𝑎 − 𝑟 = 2𝑛𝑞. Then from lemma 3.5, We get [a] = [r]. 

(ii) Let 0 ≤ 𝑟, 𝑠 < 2𝑛, 𝑟 ≠ 𝑠, implies 0 ≤ |𝑟 − 𝑠| < 2𝑛, implies 2n does not divide 𝑟 − 𝑠. Then from 

lemma 3.5, We get [𝑟] ≠ [𝑠]. 

(iii) We can write (2𝑘𝑛 + 𝑎) − 𝑎 = 2𝑘𝑛. Then from lemma 3.5, We get [2kn + a] = [a]. Then proof  

follows from lemma 3.6 (i). 

(iv) The proof  follows from lemma 3.5. 

Lemma 3.7.   Let 𝐙𝟐𝐧 denote the set of residue classes modulo 2n. Then, 

𝒁𝟐𝒏 = {[𝒓]|𝟎 ≤ 𝒓 < 2𝒏} = {[𝟐𝒓], [𝟐𝒓 + 𝟏]|𝟎 ≤ 𝒓 < 𝑛} 𝒂𝒏𝒅 |𝒁𝟐𝒏| = 𝟐𝒏. 

Proof.  The proof follows from lemma 3.6 (i, ii). 
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Definition 3.8.   Let [𝐫], [𝐬] ∈ 𝐙𝟐𝐧. We define an operation ‘.’ On Z2n by        

(i) [𝒓]. [𝒔] = [𝒓 + 𝒔], if s is even, and  

(ii) [𝒓]. [𝒔] = [−𝒓 + 𝒔] = [𝟐𝒏 − 𝒓 + 𝒔], 𝒊𝒇 𝒔 𝒊𝒔 𝒐𝒅𝒅. 

Lemma 3.9. The binary operation ‘.’  on Z2n defined by definition 3.8 (i, ii) is well defined. 

Proof.  Let 𝑎1, 𝑎2, 𝑏1,𝑏2 ∈ 𝑍.  Let [𝑎1] = [𝑎2] and [𝑏1] = [𝑏2]. Then from lemma 3.5, We get 𝑎1 − 𝑎2 = 2𝑛𝑞1, 

and 𝑏1 − 𝑏2 = 2𝑛𝑞2  for some 𝑞1,𝑞2 ∈ 𝑍 , implies (𝑎1 + 𝑏1)  −  (𝑎2 + 𝑏2)  =  2𝑛(𝑞1 + 𝑞2 )  and (−𝑎1 +

𝑏1)  −  (−𝑎2 + 𝑏2)  =  2𝑛(𝑞2 − 𝑞1), b1 and  b2 both are even or both are odd, implies  [𝑎1 + 𝑏1]  =  [𝑎2 + 𝑏2] 

and [−𝑎1 + 𝑏1]  =  [−𝑎2 + 𝑏2], b1 and b2 both are even or both are odd. Then from definition 3.8 (i,ii), We get  

[a1].[b1] = [a2]. [b2]. From lemma 3.6(iii), We get [– 𝑟 + 𝑠] = [2𝑛 − 𝑟 + 𝑠].  

Lemma 3.10. Z2n is closed under‘.’, that is [𝒓], [𝒔] ∈ 𝒁𝟐𝒏 ⟹ [𝒓]. [𝒔] ∈ 𝒁𝟐𝒏, ∀ [𝒓], [𝒔] ∈  𝒁𝟐𝒏.  

Proof . The proof  follows from lemma 3.6 (i, iii) and definition 3.8 (i, ii). 

Lemma 3.11.  Z2n is associative under ‘.’. That is [𝒓]. ([𝒔]. [𝒕]) = ([𝒓]. [𝒔]). [𝒕], ∀[𝒓], [𝒔], [𝒕] ∈ 𝒁𝟐𝒏. 

Proof.  Let s be even and t be even. Then from definition 3.8 (i), We get [𝑟]. ([𝑠]. [𝑡])  =  [𝑟]. ([𝑠 + 𝑡]) = [𝑟 +

𝑠 + 𝑡] = [𝑟 + 𝑠]. [𝑡] = ([𝑟]. [𝑠]). [𝑡]. 

Let s be even and t be odd. Then from definition 3.8 (ii), We get [𝑟]. ([𝑠]. [𝑡])  =  [𝑟]. [−𝑠 + 𝑡] =  [−𝑟 − 𝑠 +

𝑡] = [𝑟 + 𝑠]. [𝑡]  =  ([𝑟]. [𝑠]). [𝑡]. 

Let s be odd and t be even. Then from definition 3.8 (i, ii), We get [𝑟]. ([𝑠]. [𝑡]) = [𝑟]. [𝑠 + 𝑡] = [−𝑟 + 𝑠 +

𝑡]  = [−𝑟 + 𝑠]. [𝑡] = ([𝑟]. [𝑠]). [𝑡]. 

Let s be odd and t be odd. Then from definition 3.8 (i, ii), We get [𝑟]. ([𝑠]. [𝑡]) = [𝑟]. [−𝑠 + 𝑡] = [𝑟 − 𝑠 + 𝑡]  =

 [−𝑟 + 𝑠]. [𝑡] = ([𝑟]. [𝑠]). [𝑡]. 

Lemma 3.12.  [0] is identity of Z2n under ‘.’. That is [𝒓]. [𝟎] = [𝟎]. [𝒓] = [𝒓], ∀[𝒓] ∈ 𝒁𝟐𝒏. 

Proof. Let [𝑟] ∈ 𝑍2𝑛. if r is even, then from definition 3.8(i), We get [𝑟]. [0] = [𝑟 + 0] = [𝑟] = [0 + 𝑟] =

[0]. [𝑟]. If r is odd, then from definition 3.8 (i, ii), We get [𝑟]. [0] = [𝑟 + 0] = [𝑟] = [−0 + 𝑟] = [0]. [𝑟]. 

Lemma 3.13.   Let [𝒓] ∈ 𝒁𝟐𝒏. Then inverse of [r] under ‘.’  is given by      

(i) [𝑟]−1 = [−𝑟] = [2𝑛 − 𝑟],  if r is even, and 

(ii) [𝑟]−1 = [𝑟],  if r is odd. 
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Proof.  Let [r] ∈ Z2n. If r is even, then from definition 3.8 (i), We get [𝑟]. [−𝑟] = [𝑟 − 𝑟] = [0] = [−𝑟 + 𝑟] =

[−𝑟]. [𝑟], implies [𝑟]−1 = [−𝑟]. If r is odd, then from definition 3.8(ii), We get [𝑟]. [𝑟] = [−𝑟 + 𝑟] = [0], 

implies [𝑟]−1 = [𝑟]. Also from lemma 3.6(iii), We get [−𝑟] = [2𝑛 − 𝑟].  

Lemma 3.14.   𝒁𝟐𝒏 is not commutative for 𝒏 ≥ 𝟑 under ‘.’. 

Proof.  Let [1], [2] ∈ 𝑍2𝑛 . Then from definition 3.8 (i, ii), We get [1]. [2] = [1 + 2] = [3]  and [2]. [1] =

[−2 + 1] = [−1] = [2𝑛 − 1], by lemma 3.6 (iii). If 𝑛 ≥ 3, then 2𝑛 − 1 ≠ 3 and 0 ≤ 2𝑛 − 1, 3 < 2𝑛. Then 

from lemma 3.6(ii), We get [3] ≠ [2𝑛 − 1]. Then it follows that [1]. [2] ≠ [2]. [1]. 

Theorem 3.15.   The set Z2n of residue classes modulo 2n forms a group of order 2n under ‘.’. Further Z2n is 

non-abelian for 𝒏 ≥ 𝟑. 

Proof.  The proof  follows from lemma 3.7, definition 3.8 and lemma (3.9, 3.10, 3.11, 3.12, 3.13, 3.14). 

 

 

 

Theorem 3.16.  The dihedral group Dn of degree n has a new representation as a group of residue classes 

modulo 2n given by 

𝑫𝒏 = 𝒁𝟐𝒏 = {[𝒓]|𝟎 ≤ 𝒓 < 2𝒏} = {[𝟐𝒓], [𝟐𝒓 + 𝟏]|𝟎 ≤ 𝒓 < 𝑛} under ‘.’defined by definition 3.8 (i, ii). 

Proof. Let Dn be dihedral group of degree n defined by definition 2.1 [3,4]. We define a mapping 𝑓: 𝑍2𝑛 → 𝐷𝑛 

from 𝑍2𝑛 into 𝐷𝑛  by 𝑓([2𝑟]) = 𝑥𝑟and f([2r + 1]) = 𝑦𝑥r, where r = 0,1,2 ..., (n-1). Let [𝑙], [𝑚] ∈ 𝑍2𝑛.   

Let 𝑙 = 2𝑟 and 𝑚 = 2𝑡 + 1. Then from definition 2.1 (i, ii), definition 3.8 (ii) and definition of  f,  We get 

𝑓([𝑙]. [𝑚]) = 𝑓([2𝑟]. [2𝑡 + 1]  ) = 𝑓([−2𝑟 + 2𝑡 + 1]) = 𝑓([2(−𝑟 + 𝑡) + 1])  =  𝑦𝑥−𝑟+𝑡 = 𝑦𝑥𝑡𝑥−𝑟 =

𝑥𝑟𝑦𝑥𝑡 = 𝑓([2𝑟])𝑓([2𝑡 + 1])  = 𝑓([𝑙])𝑓([𝑚]).  

Let 𝑙 = 2𝑟 and 𝑚 = 2𝑡. Then from definition 3.8 (i) and definition of f, We get 𝑓([𝑙]. [𝑚]) = 𝑓([2𝑟]. [2𝑡]) =

𝑓([2𝑟 + 2𝑡]) = 𝑓([2(𝑟 + 𝑡)])  = 𝑥𝑟+𝑡 = 𝑥𝑟𝑥𝑡 = 𝑓([2𝑟])𝑓([2𝑡]) = 𝑓([𝑙])𝑓([𝑚]).  

Let 𝑙 = 2𝑟 + 1 and 𝑚 = 2𝑡. Then from definition 3.8 (i) and definition of f, We get 𝑓([𝑙]. [𝑚]) = 𝑓([2𝑟 +

1]. [2𝑡]) = 𝑓([2𝑟 + 1 + 2𝑡] ) = 𝑓([2(𝑟 + 𝑡) + 1] ) = 𝑦𝑥𝑟+𝑡 = 𝑦𝑥𝑟𝑥𝑡 

=𝑓([2𝑟 + 1])𝑓([2𝑡]) = 𝑓([𝑙])𝑓([𝑚]).  
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Let 𝑙 = 2𝑟 + 1 and 𝑚 = 2𝑡 + 1. Then from definition 2.1 (ii), definition 3.8 (ii) and definition of 𝑓, We get 

𝑓([𝑙]. [𝑚]) = 𝑓([2𝑟 + 1]. [2𝑡 + 1]) = 𝑓([−2𝑟 + 2𝑡]) = ([2(−𝑟 + 𝑡)]) = 𝑥−𝑟+𝑡 = 𝑥−𝑟𝑥𝑡 = 𝑥−𝑟 . 1. 𝑥𝑡 =

𝑥−𝑟𝑦2𝑥𝑡 = 𝑥−𝑟𝑦𝑦𝑥𝑡 = 𝑦𝑥𝑟𝑦𝑥𝑡 = 𝑓([2𝑟 + 1])𝑓([2𝑡 + 1]) = 𝑓([𝑙])𝑓([𝑚]). 

It follows that 𝑓 is a homomorphism. From definition 2.1(i,ii), lemma 3.7 and definition of 𝑓, it follows that 𝑓 

is one-one and onto. Hence We get 𝑍2𝑛 ≅ 𝐷𝑛. Then the proof follows from lemma 3.7 and theorem 3.15. 

Definition 3.17. Let Dn be dihedral group of degree n given by theorem 3.16. Then [𝑟] ∈ 𝐷𝑛 will be called even 

or odd element of 𝐷𝑛 according as r is even or odd.  

Lemma 3.18. Let E and O be defined by 

(i) 𝐸 = {[2𝑟]|0 ≤ 𝑟 < 𝑛}, and 

(ii) O = {[2𝑟 + 1]|0 ≤ 𝑟 < 𝑛}. 

Then E and O are sets of even and odd elements of Dn and  

(iii) 𝐷𝑛 = 𝐸 ∪ 𝑂, 𝐸 ∩ 𝑂 = ∅ = 𝑛𝑢𝑙𝑙, 

(iv) |𝐸| = 𝑛, |𝑂| = 𝑛 and |𝐷𝑛| = 2𝑛. 

Proof.  The proof follows from theorem 3.16. 

Lemma 3.19. Let Dn be dihedral group of degree n and  [𝒔], [𝟐𝒓], [𝟐𝒓 + 𝟏], [𝒍] ∈ 𝑫𝒏. Then, 

(i) 𝐾[2𝑟] = [𝐾(2𝑟)], for any positive integer K,  

(ii) 𝐿[2𝑟 + 1] = [0], if L is even,  

(iii)  𝐿[2𝑟 + 1] = [2𝑟 + 1], 𝑖𝑓 𝐿 𝑖𝑠 𝑂𝑑𝑑, and 

(iv) [𝑠] = [𝑙] ⟺ [𝑠 − 𝑙] = [0], 

where N[r] denote the N-th power of [𝑟] ∈ 𝐷𝑛. That is N[r] = [r]N. 

Proof. (i) From definition 3.8 (i), We get, 1[2𝑟] = [2𝑟], 2[2𝑟] = [2𝑟]. [2𝑟] = [2𝑟 + 2𝑟] = [2(2𝑟)], 3[(2𝑟)] = 

2[2𝑟]. [2𝑟] = [2(2𝑟)]. [2𝑟] = [2(2𝑟) + 2𝑟] = [3(2𝑟)]. Continuing, We get, 𝐾[2𝑟] = [𝐾(2𝑟)]. 

(ii) Let  L be even. Then L = 2q for some 𝑞 ∈ 𝑍. Then from definition 3.8 (ii) and lemma 3.19(i), We get, 

𝐿[2𝑟 + 1] = 2𝑞[2𝑟 + 1] = 𝑞([2𝑟 + 1]. [2𝑟 + 1]) = 𝑞[−2𝑟 − 1 + 2𝑟 + 1] = 𝑞[0] = [𝑞(0)] = [0]. 

(iii) Let L be odd. Then L = 2q+1 for some 𝑞 ∈ 𝑍. 

Then from lemma 3.19(ii) and definition 3.8 (ii), We get, L[2𝑟 + 1] = (2𝑞 + 1)[2𝑟 + 1] =

2𝑞[2𝑟 + 1]. [2𝑟 + 1] = [0]. [2𝑟 + 1] = [−0 + 2𝑟 + 1] = [2𝑟 + 1]. 

(iv) Using lemma 3.5 and lemma 3.6 (iv), We get,  
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[𝑠] = [𝑙] ⟺ 𝑠 − 𝑙 = 2𝑛𝑞 ⟺ [𝑠 − 𝑙] = [2𝑛𝑞] = [0]. 

4. The (N,M)-th Commutativity Degree Of Dihedral Groups 

Definition 4.1.  We define the (N,M)-th commutativity degree 𝐏𝐍
𝐌(𝐆) of a finite group G by  

𝑷𝑵
𝑴(𝑮) = |{(𝒙, 𝒚) ∈ 𝑮 × 𝑮|𝒙𝑵𝒚𝑴 = 𝒚𝑴𝒙𝑵}|/(|𝑮|2), 

for positive integers N and M. 

Definition 4.2.  The (N, M)-th commutativity set 𝑪𝑵
𝑴(𝑨 × 𝑩) of A×B subset of 𝑫𝒏 × 𝑫𝒏 is defined by  

𝑪𝑵
𝑴(𝑨 × 𝑩) = {([𝒓], [𝒔]) ∈ 𝑨 × 𝑩|𝑵[𝒓]. 𝑴[𝒔] = 𝑴[𝒔]. 𝑵[𝒓]},  

where We define L[r]=[r]L for any integer L. 

Lemma 4.3.  Let  Dn be dihedral group of degree n. Then,  

𝑷𝑵
𝑴(𝑫𝒏) = [|𝑪𝑵

𝑴(𝑬 × 𝑬)|+|𝑪𝑵
𝑴(𝑬 × 𝑶)| +  |𝑪𝑵

𝑴(𝑶 × 𝑬)| + |𝑪𝑵
𝑴(𝑶 × 𝑶)|]/(𝟒𝒏𝟐). 

Proof.  From definition (4.1, 4.2), for 𝑮 = 𝑫𝒏  𝒂𝒏𝒅  |𝑫𝒏| = 𝟐𝒏, 𝑾𝒆 𝒈𝒆𝒕,  

𝑷𝑵
𝑴(𝑫𝒏) = |{([𝒓], [𝒔]) ∈ 𝑫𝒏 × 𝑫𝒏|𝑵[𝒓]. 𝑴[𝒔] = 𝑴[𝒔]. 𝑵[𝒓]}|/(𝟒𝒏𝟐), and  

𝑪𝑵
𝑴(𝑫𝒏 × 𝑫𝒏) = {([𝒓], [𝒔]) ∈ 𝑫𝒏 × 𝑫𝒏|𝑵[𝒓]. 𝑴[𝒔] = 𝑴[𝒔]. 𝑵[𝒓]}. 

Then, We get, PN
M(Dn) = |CN

M(Dn × Dn)|/(4n2).  From lemma 3.18(iii, iv), We get Dn × Dn = (E × E) ∪

(E × O) ∪ (O × E) ∪ (O × O),  where any two of E × E, E × O, O × E  and O × O  are disjoint. Then using 

definition 4.2, We get, |CN
M(Dn × Dn)| = |CN

M(E × E)| + |CN
M(E × O)| + |CN

M(O × E)|+|CN
M(O × O)|. Then We 

get lemma 4.3. 

Lemma 4.4. Let 𝑫𝒏 be dihedral group of degree n. Then , 

(i) 𝑃𝑁
1(𝐷𝑛) = 𝑃𝑁(𝐷𝑛), and 

(𝑖𝑖) 𝑃1
1(𝐷𝑛) = 𝑃(𝐷𝑛). 

Proof .    The proof  follows from definition (2.2, 2.3, 4.1) for G = Dn. 

Lemma 4.5. |𝑪𝑲
𝑳 (𝑨 × 𝑩)| = |𝑪𝑳

𝑲(𝑩 × 𝑨)|,  for any L and K. 

Proof.  From definition 4.2, We get, 𝐶𝐾
𝐿(𝐴 × 𝐵) = {([𝑟], [𝑠]) ∈ 𝐴 × 𝐵|𝐾[𝑟]. 𝐿[𝑠] = 𝐿[𝑠]. 𝐾[𝑟]} and  

 𝐶𝐿
𝐾(𝐵 × 𝐴) = {([𝑠], [𝑟]) ∈ 𝐵 × 𝐴|𝐿[𝑠]. 𝐾[𝑟] = 𝐾[𝑟]. 𝐿[𝑠]}.   Then it follows that ([𝑟], [𝑠]) ∈ 𝐶𝐾

𝐿(𝐴 × 𝐵) ⟺

([𝑠], [𝑟]) ∈ 𝐶𝐿
𝐾(𝐵 × 𝐴),  implies |𝐶𝐾

𝐿(𝐴 × 𝐵)| = |𝐶𝐿
𝐾(𝐵 × 𝐴)|. 

Lemma 4.6.  Let Dn be dihedral group of degree n. Then, 

(i) |𝐶𝐾
𝐿(𝐸 × 𝑂)| = |𝐶𝐿

𝐾(𝑂 × 𝐸)| = |𝐶𝐾
1(𝐸 × 𝑂)| = |𝐶1

𝐾(𝑂 × 𝐸)|, if L is odd and K is any integer, 
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(ii) |𝐶𝐾
𝐿(𝑂 × 𝑂)| = |𝐶𝐿

𝐾(𝑂 × 𝑂)| = |𝐶1
1(𝑂 × 𝑂)|,  if L and K both are odd, 

(iii) |𝐶𝐾
𝐿(𝐸 × 𝑂)| = |𝐶𝐿

𝐾(𝑂 × 𝐸)| = |𝐶𝐾
𝐿(𝑂 × 𝑂)| = |𝐶𝐿

𝐾(𝑂 × 𝑂)| = 𝑛2, if L is even and K is any integer, and 

(𝑖𝑣) |𝐶𝐾
𝐿(𝐸 × 𝐸)| = 𝑛2, if L and K are any positive integer. 

Proof.  

(i)   From definition 4.2, We get, 𝐶𝐾
𝐿(𝐸 × 𝑂) = {([𝑟], [𝑠]) ∈ 𝐸 × 𝑂|𝐾[𝑟]. 𝐿[𝑠] = 𝐿[𝑠]. 𝐾[𝑟]}  

 and  𝐶𝐾
1(𝐸 × 𝑂) = {([𝑟], [𝑠]) ∈ 𝐸 × 𝑂|𝐾[𝑟]. [𝑠] = [𝑠]. 𝐾[𝑟]}. Let L be odd. Then from lemma 3.19 (iii), 

We get, 𝐿[𝑠] = [𝑠].  Then it follows that 𝐶𝐾
𝐿(𝐸 × 𝑂) = 𝐶𝐾

1(𝐸 × 𝑂),  implies  |𝐶𝐾
𝐿(𝐸 × 𝑂)| = |𝐶𝐾

1(𝐸 ×

𝑂)|. Then using lemma 4.5, We get lemma 4.6 (i). 

(ii) From definition 4.2,  We get 𝐶𝐾
𝐿(𝑂 × 𝑂) = {([𝑟], [𝑠]) ∈ 𝑂 × 𝑂|𝐾[𝑟]. 𝐿[𝑠] = 𝐿[𝑠]. 𝐾[𝑟]} and 

 𝐶𝐾
1(𝑂 × 𝑂) = {([𝑟], [𝑠]) ∈ 𝑂 × 𝑂|[𝑟]. [𝑠] = [𝑠]. [𝑟]}. If L and K both are odd, then from lemma 3.19 (iii), 

We get L[s] = [s] and K[r] = [r]. Then it follows that  

𝐶𝐾
𝐿(𝑂 × 𝑂) = 𝐶1

1(𝑂 × 𝑂), 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 |𝐶𝐾
𝐿(𝑂 × 𝑂)| = |𝐶1

1(𝑂 × 𝑂)|. Then, using lemma 4.5, We get 

lemma 4.6 (ii). 

(iii) From definition 4.2, We get 𝐶𝐾
𝐿(𝐸 × 𝑂) = {([𝑟], [𝑠]) ∈ 𝐸 × 𝑂|𝐾[𝑟]. 𝐿[𝑠] = 𝐿[𝑠]. 𝐾[𝑟]} and  

 𝐶𝐾
𝐿(𝑂 × 𝑂) = {([𝑟], [𝑠]) ∈ 𝑂 × 𝑂|𝐾[𝑟]. 𝐿[𝑠] = 𝐿[𝑠]. 𝐾[𝑟]}. If L is even, then from Lemma 3.19 (ii) , We 

get  𝐿[𝑠] = [0]. Then from lemma 3.12, We get 𝐾[𝑟]. 𝐿[𝑠] = 𝐿[𝑠]. 𝐾[𝑟], ∀ [𝑟]  ∈ 𝐷𝑛, ∀ [𝑠] ∈ 𝑂. Then it 

follows that,  

 𝐶𝐾
𝐿(𝐸 × 𝑂) = 𝐸 × 𝑂, 𝐶𝐾

𝐿(𝑂 × 𝑂) = 𝑂 × 𝑂.  

 Then from lemma 3.18 (iv), We get |𝐶𝐾
𝐿(𝐸 × 𝑂)| = |𝐸||𝑂| = 𝑛. 𝑛 = 𝑛2 and |𝐶𝐾

𝐿(𝑂 × 𝑂)| = |𝑂||𝑂| =

𝑛. 𝑛 = 𝑛2. Then from lemma 4.5, We get lemma 4.6 (iii). 

(iv) From definition 4.2, We get 𝐶𝐾
𝐿(𝐸 × 𝐸) = {([𝑟], [𝑠]) ∈ 𝐸 × 𝐸|𝐾[𝑟]. 𝐿[𝑠] = 𝐿[𝑠]. 𝐾[𝑟]}. Since [r] and [s] 

are even, so from 3.19 (i), it follows that K[r] and L[s] are even. From definition 3.8(i), We get 

𝐾[𝑟]. 𝐿[𝑠] = [𝐾𝑟]. [𝐿𝑠] = [𝐾𝑟 + 𝐿𝑠] = [𝐿𝑠 + 𝐾𝑟] = [𝐿𝑠]. [𝐾𝑟] 

 = 𝐿[𝑠]. 𝐾[𝑟], ∀ [𝑟], [𝑠] ∈ 𝐸. Then It follows that |𝐶𝐾
𝐿(𝐸 × 𝐸)| = |𝐸 × 𝐸| = |𝐸|. |𝐸| = 𝑛2  using lemma 

3.18 (iv). 

Lemma 4.7.   If K is any positive integer and [𝟐𝒕] ∈ 𝑫𝒏, then 𝑲[𝟐𝒕] = [𝟎] has p = (n, K) number of solutions 

as [𝟐𝒕] = [𝟐𝒗𝒄], 𝟎 ≤ 𝒗 < 𝑝, 𝑐 =  𝑛 / 𝑝. 
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Proof.  Let p = greatest common divisor of n and K = (n, K). Then n = pc, K = pd, (d, c) = 1. Let [2t] ∈ 𝐷𝑛 and 

𝐾[2𝑡] = [0].  Let 0 ≤ 2𝑡 < 2𝑛. Then, from lemma 3.19(i), We get [2Kt] = [0]. Then from lemma 3.5, We get  

𝐾(2𝑡) = 2𝑟𝑛, for some r, 0 ≤ 2𝑡 < 2𝑛,  implies 𝑡 = 𝑟𝑛/𝐾, 𝐾\𝑟𝑛(𝐾 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑟𝑛), 0 ≤ 2𝑟𝑛/𝐾 < 2𝑛,  implies, 

𝑡 = 𝑟𝑝𝑐 /𝑝𝑑, 𝑝𝑑\𝑟𝑝𝑐, 0 ≤ 2𝑟𝑝𝑐/𝑝𝑑 < 2𝑝𝑐, 𝑐 = 𝑛/𝑝, 𝑝 = (𝑛, 𝐾), (𝑑, 𝑐) = 1, 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡 = 𝑟𝑐/𝑑,   𝑑\𝑟, 0 ≤

𝑟/𝑑 < 𝑝, 𝑐 = 𝑛/𝑝,   𝑝 = (𝑛, 𝐾), 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡 = 𝑣𝑑𝑐/𝑑, 𝑟 = 𝑣𝑑, 0 ≤ 𝑣𝑑/𝑑 < 𝑝, 𝑐 = 𝑛/𝑝, 𝑝 = (𝑛, 𝐾), 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡 =

𝑣𝑐, 0 ≤ 𝑣 < 𝑝, 𝑐 = 𝑛/𝑝, 𝑝 = (𝑛, 𝐾), 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 [2𝑡] = [2𝑣𝑐], 0 ≤ 𝑣 < 𝑝, 𝑐 = 𝑛/𝑝, 𝑡 = 𝑣𝑐, 𝑝 = (𝑛, 𝐾). 𝑁𝑜𝑤 0 ≤

𝑣 < 𝑝, 𝑐 = 𝑛/𝑝, 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 0 ≤ 2𝑣𝑐 < 2𝑝𝑐, 0 ≤ 𝑣 < 𝑝, 𝑐 = 𝑛/𝑝, 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 0 ≤ 2𝑣𝑐 < 2𝑛 𝑓𝑜𝑟  0 ≤ 𝑣 < 𝑝.  Then 

from lemma 3.6 (ii), it follows that  [2t] = [2vc], for v = 0,1,2…, (p-1), are p = (n, K) different elements of Dn. 

Let t be any integer. Then by division algorithm We get 2𝑡 = 2𝑛𝑞 + 2𝑙, 0 ≤ 2𝑙 < 2𝑛.  Then from lemma 3.6(iii), 

We get [2𝑡] = [2𝑛𝑞 + 2𝑙] = [2𝑙], 0 ≤ 2𝑙 ≤ 2𝑛, implies 𝐾[2𝑡] = 𝐾[2𝑙]  and 𝐾[2𝑡] = [0] ⟺ 𝐾[2𝑙] = [0], 0 ≤

2𝑙 < 𝑛. Then by previous case We get the theorem. 

Lemma 4.8. Let K be any integer. Then  |𝐶𝐾
1(𝐸 × 𝑂)| = |𝐶1

𝐾(𝑂 × 𝐸)| = (𝑛, 2𝐾)𝑛. 

Proof.    From definition 4.2, We get 𝐶𝐾
1(𝐸 × 𝑂) =

{([2𝑡], [2𝑟 + 1]) ∈ 𝐸 × 𝑂|𝐾[2𝑡]. [2𝑟 + 1] = [2𝑟 + 1]. 𝐾[2𝑡]}. Then from definition 3.8 (i,ii) and lemma 3.19 

(i, iv), We get 𝐶𝐾
1(𝐸 × 𝑂) = {([2𝑡], [2𝑟 + 1]) ∈ 𝐸 × 𝑂|2𝐾[2𝑡] = [0]}. Then from lemma 3.18(iv) and lemma 

4.7, We get 𝐶𝐾
1(𝐸 × 𝑂) = {([2𝑣𝑐], [2𝑟 + 1])|0 ≤ 𝑣 < 𝑝, 0 ≤ 𝑟 < 𝑛, 𝑝 = (𝑛, 2𝐾), 𝑐 = 𝑛/𝑝},  implies 

|𝐶𝐾
1(𝐸 × 𝑂)| = 𝑝𝑛 = (𝑛, 2𝐾)𝑛. From lemma 4.5, We get |𝐶1

𝐾(𝑂 × 𝐸)| = |𝐶𝐾
1(𝐸 × 𝑂)| = (𝑛, 2𝐾)𝑛.  

 

Lemma 4.9. |𝐂𝟏
𝟏(𝐎 × 𝐎)| = (𝐧, 𝟐)𝐧. 

Proof.  From definition 4.2, We get 𝐶1
1(𝑂 × 𝑂) =

{([2𝑡 + 1], [2𝑟 + 1]) ∈ 𝑂 × 𝑂|[2𝑡 + 1]. [2𝑟 + 1] = [2𝑟 + 1]. [2𝑡 + 1]}.  Then from definition 3.8 (ii) and 

lemma 3.19 (iv), We get 𝐶1
1(𝑂 × 𝑂) = {([2𝑡 + 1], [2𝑟 + 1]) ∈ 𝑂 × 𝑂|2[2(𝑡 − 𝑟)] = [0]}. Then from lemma 

3.18 (iv), lemma 3.19(iv)  and lemma 4.7, We get 𝐶1
1(𝑂 × 𝑂) = {([2𝑡 + 1], [2𝑟 + 1])|[2𝑡 − 2𝑟] = [2𝑣𝑐], 0 ≤

𝑣 < 𝑝, 0 ≤ 𝑟 < 𝑛, 𝑐 = 𝑛/𝑝, 𝑝 = (𝑛, 2)}  = 

{([2𝑣𝑐 + 2𝑟 + 1], [2𝑟 + 1])|0 ≤ 𝑣 < 𝑝, 0 ≤ 𝑟 < 𝑛, 𝑐 = 𝑛/𝑝, 𝑝 = (𝑛, 2)}, 

implies |𝐶1
1(𝑂 × 𝑂)| = pn = (n, 2)n. 

Theorem 4.10. If N and M both are odd positive integers, then, 

𝑃𝑁
𝑀(𝐷𝑛) = [𝑛 + (𝑛, 2𝑁) + (𝑛, 2𝑀) + (𝑛, 2)]/[4𝑛]. 
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Proof. Let N and M both be odd. Then from lemma 4.6 (i, ii, iv), lemma 4.8 and lemma 4.9, We get 

|𝐶𝑁
𝑀(𝐸 × 𝑂)| = |𝐶𝑁

1(𝐸 × 𝑂)| = (𝑛, 2𝑁)𝑛, |𝐶𝑁
𝑀(𝑂 × 𝐸)| = |𝐶1

𝑀(𝑂 × 𝐸)| = (𝑛, 2𝑀)𝑛, |𝐶𝑁
𝑀(𝑂 × 𝑂)| =

|𝐶1
1(𝑂 × 𝑂)| = (𝑛, 2)𝑛  and |𝐶𝑁

𝑀(𝐸 × 𝐸)| = 𝑛2.  Then from lemma 4.3, We get 𝑃𝑁
𝑀(𝐷𝑛) = [𝑛2 +

(𝑛, 2𝑁)𝑛 + (𝑛, 2𝑀)𝑛 + (𝑛, 2)𝑛]/[4𝑛2]=[𝑛 + (𝑛, 2𝑁) + (𝑛, 2𝑀) + (𝑛, 2)]/[4𝑛].  

Theorem 4.11.  If N is even and M is odd, then,   

𝑃𝑁
𝑀(𝐷𝑛) = [3𝑛 + (𝑛, 2𝑁)]/[4𝑛]. 

Proof.   Let N be even and M be odd. Then from lemma 4.6 (i,ii,iii) and lemma 4.8, We get,  

|𝐶𝑁
𝑀(𝐸 × 𝑂)| = |𝐶𝑁

1(𝐸 × 𝑂)| = (𝑛, 2𝑁)𝑛, |𝐶𝑁
𝑀(𝑂 × 𝐸)| = 𝑛2, |𝐶𝑁

𝑀(𝑂 × 𝑂)| = 𝑛2 

 and  |𝐶𝑁
𝑀(𝐸 × 𝐸)| = 𝑛2. Then from lemma 4.3, We get  𝑃𝑁

𝑀(𝐷𝑛) = [𝑛2 + (𝑛, 2𝑁)𝑛 + 𝑛2 + 𝑛2]/[4𝑛2] = 

[3𝑛 + (𝑛, 2𝑁)]/(4𝑛). 

Theorem 4.12.  If N is odd and M is even, then,  

𝑃𝑁
𝑀(𝐷𝑛) = [3𝑛 + (𝑛, 2𝑀)]/[4𝑛]. 

Proof.  Let N be odd and M be even. Then from lemma 4.6 (i, iii, iv) and lemma 4.8, We get 

|𝐶𝑁
𝑀(𝐸 × 𝑂)| = 𝑛2, |𝐶𝑁

𝑀(𝑂 × 𝐸)| = |𝐶1
𝑀(𝑂 × 𝐸)| = (𝑛, 2𝑀)𝑛, |𝐶𝑁

𝑀(𝑂 × 𝑂)| = 𝑛2 𝑎𝑛𝑑  

|𝐶𝑁
𝑀(𝐸 × 𝐸)| = 𝑛2. Then from lemma 4.3, We get 

𝑃𝑁
𝑀(𝐷𝑛) = [𝑛2 + 𝑛2 + (𝑛, 2𝑀)𝑛 + 𝑛2]/[4𝑛2] = [3𝑛 + (𝑛, 2𝑀)]/[4𝑛]. 

Theorem 4.13.   If N and M both are even, then,  𝑃𝑁
𝑀(𝐷𝑛) = 1. 

Proof.  Let N and M both be even. Then from lemma 4.6 (iii, iv), We get  |𝐶𝑁
𝑀(𝐸 × 𝑂)| = 𝑛2 , 

|𝐶𝑁
𝑀(𝑂 × 𝐸)| = 𝑛2, |𝐶𝑁

𝑀(𝑂 × 𝑂)| = 𝑛2 and |𝐶𝑁
𝑀(𝐸 × 𝐸)| = 𝑛2. Then from lemma 4.3 We get 𝑃𝑁

𝑀(𝐷𝑛) =

[𝑛2 + 𝑛2 + 𝑛2 + 𝑛2]/[4𝑛2] =1. 

Theorem 4.14. The N-th commutativity degree of dihedral group of degree n is given by 

(i) 𝑃𝑁
1(𝐷𝑛) = 𝑃𝑁(𝐷𝑛) = [𝑛 + (𝑛, 2𝑁) + 2(𝑛, 2)]/[4𝑛], if N is odd and 

(𝑖𝑖) 𝑃𝑁
1(𝐷𝑛) = 𝑃𝑁(𝐷𝑛) = [3𝑛 + (𝑛, 2𝑁)]/[4𝑛], if N is even. 

Proof.  The proof follows from lemma 4.4(i), theorem 4.10 and theorem 4.11, for  M = 1. 

Theorem 4.15.    Let Dn be dihedral group of degree n. Then,  

𝑃1
1(𝐷𝑛) = 𝑃(𝐷𝑛) = [𝑛 + 3(𝑛, 2)]/[4𝑛]. 

Proof.  The proof follows from lemma 4.4(ii) and theorem 4.14 (i) for N = 1. 
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Theorem 4.16[2].  Let Dn be dihedral group of degree n, where 𝒏 ≥ 𝟑, 𝒅 = 𝒈. 𝒄. 𝒅. (𝒏, 𝑵) 𝒂𝒏𝒅  

𝑟 = 𝑛/𝑑. Then, 

(i) 𝑃𝑁(𝐷𝑛) = 1/4 + 1/(2𝑛) + 1/(4𝑟), n is odd, N is odd, 

(ii) 𝑃𝑁(𝐷𝑛) = 1/4 + 2[1/(2𝑛) + 1/(4𝑟)],  n is even, N is odd, 

(iii) 𝑃𝑁(𝐷𝑛) = 3/4 + 1/(2𝑟), r is even, N is even, 

(iv) 𝑃𝑁(𝐷𝑛) = 3/4 + 1/(4𝑟), 𝑟 𝑖𝑠 𝑜𝑑𝑑, 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛. 

Proof.  Let d = g.c.d.(n, N) and 𝑟 =  𝑛/𝑑 =  𝑛/(𝑛, 𝑁). Then (𝑛, 𝑁)  =  𝑛/𝑟. Le N be odd. If n is odd, then (n, 

2) = 1 and (𝑛, 2𝑁) = (𝑛, 𝑁) = 𝑛/𝑟. If n is even, then (𝑛, 2)  =  2 and (𝑛, 2𝑁)  =  2(𝑛, 𝑁) =2𝑛/𝑟. Let N be 

even. If 𝑟 = 𝑛/𝑑 =  𝑛/(𝑛, 𝑁) is even, then (𝑛, 2𝑁) = 2(𝑛, 𝑁) = 2𝑛/𝑟. If r is odd, then, (𝑛, 2𝑁) = (𝑛, 𝑁) =

𝑛/𝑟. Then proof follows from theorem 4.14 by putting the values of (𝑛, 2) 𝑎𝑛𝑑 (𝑛, 2𝑁). 

Theorem 4.17 [1].  Let Dn be dihedral group of degree n. Then, (i) P(Dn) =  (𝒏 + 𝟑 )/(𝟒𝒏), if n is odd and 

(ii) P(Dn)=(𝒏 + 𝟔)/(𝟒𝒏), if n is even. 

Proof.  Let n be odd, then (𝑛, 2) = 1. Let n be even, then (𝑛, 2)  =  2. Then the proof follows from theorem 

4.15 by putting the values of (n, 2). 

Theorem 4.18 [6,7]. Let D4 be dihedral group of degree 4. Then, 

(i) PN(D4) = 5/8, if N is odd and  

(ii) PN(D4) = 1 ,  if N is even.  

Proof.  Let n = 4. Then (n, 2) = (4, 2) = 2. If N is odd, then (n, 2N) = (4, 2N) = 2. If N is even, then (n, 2N) = 

(4, 2N) = 4. Then from theorem 4.14 (i, ii), We get PN(D4) = 5/8,  if N is odd and PN(D4) =1, if  N is even. 

     5. The Relative (N,M)-th Commutativity Degree Of Dihedral Groups 

Definition 5.1. The relative (N,M)-th commutativity degree  

PN
M(G, G) of a finite group G is defined by 

PN
M(G, G) = P(GN, GM) = |{(𝑥, 𝑦) ∈ 𝐺𝑁 × 𝐺𝑀|𝑥𝑦 = 𝑦𝑥}|/(|𝐺𝑁||𝐺𝑀|), for positive integers N and M. Then 

PN
M(G, G) is the probability that a random element of 𝐺𝑁 commutes with a random element of 𝐺𝑀 . 

Definition. 5.2.  The commutativity set C(𝑨 × 𝑩) of (𝑨 × 𝑩) subset of 𝑫𝒏 × 𝑫𝒏 is defined by  

𝑪(𝑨 × 𝑩) = {([𝒓], [𝒔]) ∈ 𝑨 × 𝑩|[𝒓]. [𝒔] = [𝒔]. [𝒓]}. 

Lemma 5.3.  The relative (N,M)-th commutativity degree of dihedral group Dn is given by  

PN
M(Dn, Dn) = |𝐶(𝑁Dn × MDn)|/(|𝑁Dn||𝑀Dn|),  
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where We define KA = AK, the set of distinct elements of K-th power of elements of A, for any subset A of Dn. 

Proof.   From definition 5.1, for G =  Dn , We get PN
M(Dn) = |{([r], [s]) ∈ NDn × MDn|[r]. [s] = [s]. [r]}|/

(|NDn||MDn|). 

From definition 5.2, for A = NDn and B = MDn , We get 𝐶(NDn × MDn) = {([r], [s]) ∈ NDn × MDn|[r]. [s] =

[s]. [r]}. Then We get lemma 5.3. 

Lemma 5.4.   If Dn is dihedral group of degree n. Then,  

(i) PN
1(Dn, Dn) = PN(Dn, Dn), and 

(ii) P1
1(Dn, Dn) = P1

1(Dn) = P(Dn). 

Proof.  The proof follows from definition (2.2, 2.5, 4.1, 5.1) for G = Dn. 

Lemma 5.5.  Let E and O be the sets of even and odd elements of Dn respectively. If K is any positive 

integer and 𝐾𝐸 = {𝐾[2𝑡]|[2𝑡] ∈ 𝐸},  Then, 

(i) |𝐾𝐸| = 𝑛/(𝑛, 𝐾), and 

(ii) |𝐶(𝐾𝐸 × 𝑂)| = |𝐶(𝑂 × 𝐾𝐸)| = [(𝑛, 2𝐾)𝑛]/(𝑛, 𝐾). 

Proof. Let [2r],[2t]∈ 𝐸.  We define a relation ~ on E by [2r]~[2𝑡]⟺ 𝐾[2𝑟] = 𝐾[2𝑡]. Then it is easy to see 

that ~ is an equivalence relation on E and decomposes E into disjoint equivalence classes. Let [2r̅̅̅] be the class 

containing [2r]. Then [2𝑟̅̅ ̅ ] = {[2𝑡] ∈ 𝐸|𝐾[2𝑡] = 𝐾[2𝑟]}.  Then from lemma 3.19 (i, iv), We get [2𝑟̅̅ ̅ ] = 

{[2𝑡] ∈ 𝐸|𝐾[2(𝑡 − 𝑟)] = [0]}. Then from lemma 4.7, We get |[2𝑟̅̅ ̅]| = (𝑛, 𝐾). Let there be 𝑙 distinct classes. 

Then, 𝑙(𝑛, 𝐾) = |𝐸|. Then from lemma 3.18 (iv), We get 𝑙(𝑛, 𝐾) = 𝑛, implies 𝑙 = 𝑛/(𝑛, 𝐾). If [2𝑡], [2𝑠] ∈

 [2𝑟̅̅ ̅], then 𝐾[2𝑡] = 𝐾[2𝑠] and so one element of  KE will be obtained from all the elements of one class. Then 

it follows that  |𝐾𝐸| = 𝑙 = 𝑛/(𝑛, 𝐾),  Which is lemma 5.5(i).  

Let 𝑃 = {[2𝑡] ∈ 𝐸|𝐾[2𝑡]. [2𝑟 + 1] = [2𝑟 + 1]. 𝐾[2𝑡], for some [2𝑟 + 1] ∈ 𝑂}. Then using definition 3.8 (i, ii) 

and lemma 3.19 (i, ii), We get 𝑃 = {[2𝑡] ∈ 𝐸|2𝐾[2𝑡] = [0]}.  Then from lemma 4.7, We get 𝑃 =

{[2𝑣𝑐]|0 ≤ 𝑣 < 𝑝, 𝑝 = (𝑛, 2𝐾), 𝑐 = 𝑛/𝑝}  and |𝑃| = (𝑛, 2𝐾),  implies P is independent of [2r+1], implies,  

𝐾[2𝑡]. [2𝑟 + 1]  =  [2𝑟 + 1]. 𝐾[2𝑡],  ∀ [2𝑡] ∈ 𝑃, ∀ [2𝑟 + 1] ∈ 𝑂. Then it follows that every element of KE 

obtained from P will commute with all n odd elements of O. Let [2𝑡] ∈ 𝑃  and [2𝑠] ∈ [2𝑡̅̅̅]. Then, 

𝐾[2𝑡]. [2𝑟 + 1] = [2𝑟 + 1]. 𝐾[2𝑡], ∀ [2𝑟 + 1] ∈ 𝑂, 𝑎𝑛𝑑 𝐾[2𝑠] = 𝐾[2𝑡],  implies, 𝐾[2𝑠]. [2𝑟 + 1] = [2𝑟 +

1]. 𝐾[2𝑠], ∀ [2𝑟 + 1] ∈ 𝑂, 
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 implies [2𝑠] ∈ 𝑃. Then it follows that P is union of some q equivalence classes. Then it follows that 𝑞. (𝑛, 𝐾) =

|𝑃| = (𝑛, 2𝐾),  implies, 𝑞 = (𝑛, 2𝐾)/(𝑛, 𝐾). Also it follows that q elements of KE will be obtained from 

elements of P and these q elements of KE will commute with all n odd elements of O. Then from definition of 

P and definition 5.2, We get, 

 |𝐶(𝐾𝐸 × 𝑂)| = |{([𝑟], [𝑠]) ∈ 𝐾𝐸 × 𝑂|   [𝑟]. [𝑠] = [𝑠]. [𝑟]}|  = 𝑞𝑛 = {(𝑛, 2𝐾)/ (𝑛, 𝐾)} . 𝑛 =

{(𝑛, 2𝐾)𝑛}/(𝑛, 𝐾). From definition 5.2, We get 𝐶(𝐾𝐸 × 𝑂) = {([𝑟], [𝑠]) ∈ 𝐾𝐸 × 𝑂|[𝑟]. [𝑠] = [𝑠]. [𝑟]} and 

𝐶(𝑂 × 𝐾𝐸) = {([𝑠], [𝑟]) ∈ 𝑂 × 𝐾𝐸|[𝑠]. [𝑟] = [𝑟]. [𝑠]}.  

Then, ([𝑟], [𝑠]) ∈ (𝐾𝐸 × 𝑂) ⟺ [𝑟]. [𝑠] = [𝑠]. [𝑟] ⟺ [𝑠]. [𝑟] = [𝑟]. [𝑠] ⟺ ([𝑠], [𝑟]) ∈ 𝐶(𝑂 × 𝐾𝐸).  

Then it follows that |𝐶(𝑂 × 𝐾𝐸)| = |𝐶(𝐾𝐸 × 𝑂)| = {(𝑛, 2𝐾)𝑛}/(𝑛, 𝐾), which is lemma 5.5 (ii). 

Lemma 5.6. Let E and  O be the sets of even and odd elements of Dn respectively. Then, 

(i) |𝐶(𝐾𝐸 × 𝐿𝐸)| = (𝑛2)/{(𝑛, 𝐾)(𝑛, 𝐿)}, for any positive integers K and L, and  

(ii)  |𝐶(𝑂 × 𝑂)| = (𝑛, 2)𝑛. 

Proof .  

(i) From definition 5.2, We get 𝐶(𝐾𝐸 × 𝐿𝐸) = {([𝑟], [𝑠]) ∈ 𝐾𝐸 × 𝐿𝐸|[𝑟]. [𝑠] = [𝑠]. [𝑟]}. 

 From lemma 3.19 (i) it follows that elements of KE and LE are always even for any K and L. From 

definition 3.8(i), it follows that any two even elements will always commute. Then it follows that 

|𝐶(𝐾𝐸 × 𝐿𝐸)| = |𝐾𝐸||𝐿𝐸|. 

Then from lemma 5.5(i), We get, |𝐶(𝐾𝐸 × 𝐿𝐸)| = {𝑛/ (𝑛 , 𝐾)}. {𝑛/ (𝑛, 𝐿)} = (𝑛2)/{(𝑛, 𝐾)(𝑛, 𝐿)}. 

(ii) From definition (4.2, 5.2), We get 

 𝐶1
1(𝑂 × 𝑂) = 𝐶(𝑂 × 𝑂) = {([𝑟], [𝑠]) ∈ 𝑂 × 𝑂|[𝑟]. [𝑠] = [𝑠]. [𝑟]}. Then, using lemma 4.9 We get, 

|𝐶(𝑂 × 𝑂)| = |𝐶1
1(𝑂 × 𝑂)| = (𝑛, 2)𝑛. 

Lemma 5.7.  Let E and  O be the sets of even and odd elements of  Dn respectively.  

Let 𝐾𝐸 = {𝐾[2𝑡]|[2𝑡] ∈ 𝐸} and 𝐿𝑂 = {𝐿[2𝑟 + 1]|[2𝑟 + 1] ∈ 𝑂}. Then, 

(i) [0] ∈ 𝐾𝐸, for any integer K, 

(ii) LO  = O, if L is odd integer, 

(iii) LO = {[0]}, if L is even integer, 

(iv) 𝐾𝐸 ∩ 𝑂 = ∅ = 𝑛𝑢𝑙𝑙, for any integer K, and  

(v) |𝐾𝐸 ∪ 𝑂| = {𝑛/(𝑛, 𝐾)} + 𝑛, for any integer K. 
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Proof. 

(i) From lemma 3.18(i), We get  [0] ∈ 𝐸. 𝑇ℎ𝑒𝑛 𝑢𝑠𝑖𝑛𝑔 𝑙𝑒𝑚𝑚𝑎 3.19(𝑖), 𝑊𝑒 𝑔𝑒𝑡 𝐾[0] = 𝐾[2(0)] =

[𝐾 (2(0))] = [0] ∈ 𝐾𝐸. 

(ii) Let L be odd and [2𝑟 + 1] ∈ 𝑂. Then from lemma 3.19(iii), We get 𝐿[2𝑟 + 1] = [2𝑟 + 1]. Then  

 𝐿𝑂 = {𝐿[2𝑟 + 1]|[2𝑟 + 1] ∈ 𝑂} = {[2𝑟 + 1]|[2𝑟 + 1] ∈ 𝑂} = O 

(iii) Let L be even and [2𝑟 + 1] ∈ 𝑂 . Then from lemma 3.19(ii), We get 𝐿[2𝑟 + 1] = [0] . Then 

 𝐿𝑂 =  {𝐿[2𝑟 + 1]|[2𝑟 + 1] ∈ 𝑂} = {[0]|[2𝑟 + 1] ∈ 𝑂} = {[0]}. 

(iv) From lemma 3.19(i), it follows that elements of 𝐾𝐸 = {𝐾[2𝑡]|[2𝑡] ∈ 𝐸} = {[2𝐾𝑡]|[2𝑡] ∈ 𝐸} are even. 

But elements of O are odd. Therefore 𝐾𝐸 ∩ 𝑂 = ∅ = 𝑛𝑢𝑙𝑙. 

(v) From (iv), We get 𝐾𝐸 ∩ 𝑂 = ∅ so We get |𝐾𝐸 ∪ 𝑂| = |𝐾𝐸| + |𝑂|. Then from 3.18(iv) and lemma 5.5(i), 

We get |𝐾𝐸 ∪ 𝑂| = {𝑛/(𝑛, 𝐾)} + n. 

Theorem 5.8.  Let N and M both be odd. Then,    

𝑃𝑁
𝑀(𝐷𝑛, 𝐷𝑛) = [𝑛 + (𝑛, 2𝑁)(𝑛, 𝑀) + (𝑛, 2𝑀)(𝑛, 𝑁) + (𝑛, 2)(𝑛, 𝑁)(𝑛, 𝑀)]/[𝑛{1 + (𝑛, 𝑁)}{1 + (𝑛, 𝑀)}]. 

Proof .   Let N and M both be odd. Then using lemma 3.18(iii) and lemma 5.7(ii), We get  

𝑁𝐷𝑛 = 𝑁𝐸 ∪ 𝑁𝑂 = 𝑁𝐸 ∪ 𝑂 and 𝑀𝐷𝑛 = 𝑀𝐸 ∪ 𝑀𝑂 = 𝑀𝐸 ∪ 𝑂. Then using lemma 5.7 (v), We get |𝑁𝐷𝑛| =

{𝑛/(𝑛, 𝑁)} + 𝑛 and |𝑀𝐷𝑛| = {𝑛/(𝑛, 𝑀)} + 𝑛. From lemma 5.7(iv), it follows that any two of  𝑁𝐸 × 𝑀𝐸, 𝑁𝐸 ×

𝑂, 𝑂 × 𝑀𝐸  𝑎𝑛𝑑  𝑂 × 𝑂 are disjoint. Then using definition 5.2, We get |𝐶(𝑁𝐷𝑛 × 𝑀𝐷𝑛)| = |𝐶{(𝑁𝐸 ∪ 𝑂) ×

(𝑀𝐸 ∪ 𝑂)}| = |𝐶(𝑁𝐸 × 𝑀𝐸)| + |𝐶(𝑁𝐸 × 𝑂)| + |𝐶(𝑂 × 𝑀𝐸)| + |𝐶(𝑂 × 𝑂)|.  Then using lemma 5.5 (ii) and 

lemma 5.6(i, ii), We get |𝐶(𝑁𝐷𝑛 × 𝑀𝐷𝑛)| = (n2)/{(n, N)(n, M)} + {(n, 2N)n}/

 (n, N) + {(𝑛, 2𝑀)𝑛} / (𝑛, 𝑀) + (𝑛, 2)𝑛 . Then using lemma 5.3 We get 𝑃𝑁
𝑀(𝐷𝑛, 𝐷𝑛) = |𝐶(𝑁𝐷𝑛 × 𝑀𝐷𝑛)|/

(|𝑁𝐷𝑛||𝑀𝐷𝑛|) 

= [(𝑛2)/{(n, N) (n, M)}+{(n, 2N) n}/ (n, N)+ {(n, 2M) n}/(n, M)+(n, 2) n]/ [{n/(n, N)+n}{(n/(n, M)+n}] 

= [𝑛 + (𝑛, 2𝑁 )(𝑛, 𝑀) + (𝑛, 2𝑀) (𝑛, 𝑁) + (𝑛, 2)( 𝑛, 𝑁 )(𝑛, 𝑀)] / [𝑛{1 + (𝑛, 𝑁)}{1 + (𝑛, 𝑀)}]. 

Theroem 5.9.  Let N be even and M be odd. Then,   

𝑃𝑁
𝑀(𝐷𝑛, 𝐷𝑛) = [𝑛 + (𝑛, 2𝑁)(𝑛, 𝑀)]/ [𝑛{1 + (𝑛, 𝑀)}]. 

Proof.  Let N be even and M be odd. Then using lemma 3.18(iii) and lemma 5.7(i, ii, iii), We get 

𝑁𝐷𝑛 = 𝑁𝐸 ∪ 𝑁𝑂 = 𝑁𝐸 ∪ {[0]} = 𝑁𝐸 𝑎𝑛𝑑 𝑀𝐷𝑛 = 𝑀𝐸 ∪ 𝑀𝑂 = 𝑀𝐸 ∪ 𝑂. 
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Then using lemma 5.5(i) and lemma 5.7(v), We get |𝑁𝐷𝑛| =  |𝑁𝐸| = 𝑛/(𝑛, 𝑁)  and  |𝑀𝐷𝑛| =  |𝑀𝐸 ∪ 𝑂| =

𝑛/(𝑛, 𝑀) + 𝑛. From lemma 5.7(iv),  it follows that NE×ME and NE×O are disjoint. Then using definition 5.2, 

We get  |𝐶(𝑁𝐷𝑛 × 𝑀𝐷𝑛)| =  |𝐶{𝑁𝐸 × (𝑀𝐸 ∪ 𝑂)}| 

= |𝐶{(𝑁𝐸 × 𝑀𝐸) ∪ (𝑁𝐸 × 𝑂)}| = |𝐶(𝑁𝐸 × 𝑀𝐸)| + |𝐶(𝑁𝐸 × 𝑂)|. 

Then using lemma 5.5(ii) and lemma 5.6(i),  We get  

|𝐶(𝑁𝐷𝑛 × 𝑀𝐷𝑛)| = (𝑛2)/{(𝑛, 𝑁)(𝑛, 𝑀)} + {(𝑛, 2𝑁)𝑛}/(𝑛, 𝑁). 

Then using lemma 5.3, We get 𝑃𝑁
𝑀(𝐷𝑛, 𝐷𝑛) = |C(NDn × MDn)|/(|(NDn||MDn|) = 

[(𝑛2)/{(𝑛, 𝑁)(𝑛, 𝑀)} + {(𝑛, 2𝑁)𝑛}/(𝑛, 𝑁)]/[{𝑛/(𝑛, 𝑁)}{𝑛/(𝑛, 𝑀) + 𝑛}] =  

[𝑛 + (𝑛, 2𝑁)(𝑛, 𝑀)] / [𝑛{1 + (𝑛, 𝑀)}]. 

Theorem 5.10. Let N be odd and M be even. Then, 

𝑃𝑁
𝑀(𝐷𝑛, 𝐷𝑛) = [n + (n, 2M)(n, N)]/[n{1 + (n, N)}]. 

Proof. Let N be odd and M be even. Then from lemma 3.18(iii) and lemma 5.7 (i, ii, iii), We get   𝑁𝐷𝑛 =

NE ∪ NO = NE ∪ O and 𝑀𝐷𝑛 = ME ∪ MO = ME ∪ {[0]} = ME. Then from lemma 5.5(i) and lemma 5.7(v) 

We get |𝑁𝐷𝑛| = |𝑁𝐸 ∪ 𝑂| = {n/(n, N)} + n and  |𝑀𝐷𝑛| = |𝑀𝐸| = n/(n, M).  From lemma 5.7(iv), it follows 

that 𝑁𝐸 × 𝑀𝐸 and O × 𝑀𝐸 are disjoint. Then using definition 5.2, We get |𝐶(𝑁𝐷𝑛 × 𝑀𝐷𝑛)| = |𝐶{(𝑁𝐸 ∪ 𝑂) ×

𝑀𝐸}| = |𝐶{(𝑁𝐸 × 𝑀𝐸) ∪ (𝑂 × 𝑀𝐸)}| 

=|𝐶(𝑁𝐸 × 𝑀𝐸)| + |𝐶(𝑂 × 𝑀𝐸)|. Then using lemma 5.5 (ii) and lemma 5.6(i), , We get |𝐶(𝑁𝐷𝑛 × 𝑀𝐷𝑛)| =

(𝑛2)/{(𝑛, 𝑁)(𝑛, 𝑀)} + {(𝑛, 2𝑀)𝑛} / (𝑛, 𝑀). 

Then using lemma 5.3, We get 𝑃𝑁
𝑀(𝐷𝑛, 𝐷𝑛) = |𝐶(𝑁𝐷𝑛 × 𝑀𝐷𝑛)|/(|𝑁𝐷𝑛||𝑀𝐷𝑛|) = 

[(𝑛2)/{(𝑛, 𝑁)(𝑛, 𝑀)} + {(𝑛, 2𝑀)𝑛}/(𝑛, 𝑀)]/[{𝑛/(𝑛, 𝑁) + 𝑛)}{𝑛/(𝑛, 𝑀)}] 

= [𝑛 + (𝑛, 2𝑀)(𝑛, 𝑁)] / [𝑛{1 + (𝑛, 𝑁)}]. 

Theorem 5.11.   Let N and M both be even. Then,  𝑷𝑵
𝑴(𝑫𝒏, 𝑫𝒏) = 𝟏. 

Proof.  Let N and M both be even. Then from lemma 3.18(iii) and lemma 5.7(i, iii), We get NDn= 𝑁𝐸 ∪ 𝑁𝑂 =

𝑁𝐸 ∪ {[0]} = 𝑁𝐸 and MDn=𝑀𝐸 ∪ 𝑀𝑂 = 𝑀𝐸 ∪ {[0]} = ME∪{[0]}= ME. Then using lemma 5.6(i), We get 

|𝐶(𝑁𝐷𝑛 × 𝑀𝐷𝑛)| = |𝐶(𝑁𝐸 × 𝑀𝐸)| = (𝑛2)/{(𝑛, 𝑁)(𝑛, 𝑀)}. 

Using lemma 5.5(i), We get |(𝑁𝐷𝑛)| = |𝑁𝐸|  =  𝑛/(𝑛, 𝑁)  and |(𝑀𝐷𝑛)| = |(𝑀𝐸)| = 𝑛/(𝑛, 𝑀).  Then using 

lemma 5.3, We get 𝑃𝑁
𝑀(𝐷𝑛, 𝐷𝑛) = |𝐶(𝑁𝐷𝑛 × 𝑀𝐷𝑛)|/(|𝑁𝐷||𝑀𝐷𝑛|) =  [(𝑛2)/{(𝑛, 𝑁)(𝑛, 𝑀)}]  / [{𝑛/

(𝑛, 𝑁)}{𝑛/(𝑛, 𝑀)}] =1. 
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Theorem 5.12.  The relative N-th commutativity degree of dihedral group of degree n is given by  

(i) 𝑃𝑁
1(𝐷𝑛, 𝐷𝑛) = 𝑃𝑁(𝐷𝑛, 𝐷𝑛) = [𝑛 + (𝑛, 2𝑁) + 2(𝑛, 2)(𝑛, 𝑁)]/[2𝑛{1 + (𝑛, 𝑁)}], if N is odd, and 

(𝑖𝑖)  𝑃𝑁
1(𝐷𝑛, 𝐷𝑛) = 𝑃𝑁(𝐷𝑛, 𝐷𝑛) = [𝑛 + (𝑛, 2𝑁)]/[2𝑛], if N is even. 

Proof.  If M =1, then (n, M) =1 and (n, 2M) = (n, 2). Then proof follows from Theorem (5.8, 5.9). 

Theorem 5.13 [10]. Let D3 be dihedral group of degree 3, then for K, N∈ 𝒁+, where K=0,1,2...,  the relative 

N-th commutativity degree of 𝑫𝟑, 𝑷𝑵(𝑫𝟑, 𝑫𝟑) is given as follows, 

(i) 𝑃𝑁(𝐷3, 𝐷3)  =  1/2;  𝑁 =  1 + 2 𝐾, 

(ii) 𝑃𝑁(𝐷3, 𝐷3)  =  2/3;  𝑁 =  2 + 6𝐾, 𝑁  =  4 + 6𝐾, 

(iii) 𝑃𝑁(𝐷3, 𝐷3) = 1;  𝑁 =  6 +  6𝐾. 

𝑷𝒓oof.  Let n = 3. 𝐼𝑓 𝑁 =  1 + 2𝐾, 𝑡ℎ𝑒𝑛 (3, 2𝑁)  =  (3, 𝑁) 𝑎𝑛𝑑 (3, 2)  = 1. Then from theorem 5.12(i) , 

we get 𝑃𝑁(𝐷3, 𝐷3) = [3 + (3, 2𝑁) + 2(3, 2)(3, 𝑁)]/[2(3){1 + (3, 𝑁)}] = [3 + (3, 𝑁) + 2(3, 𝑁)]/ [2(3){1 +

(3, 𝑁)}] = [3{1 + (3, 𝑁)}] / [2(3){1 + (3, 𝑁)}] = 1/2.  𝐼𝑓  𝑁 = 2 + 6𝐾, 4 + 6𝑘 , then, (𝑛, 2𝑁) = (3,2𝑁) =

1. Then from theorem 5.12 (ii), We get 𝑃𝑁(𝐷3, 𝐷3)= [3 + 1]/[2(3)]  =  2/3. 𝐼𝑓 𝑁 =  6 + 6𝐾, 𝑡ℎ𝑒𝑛 (𝑛, 2𝑁)  =

(3, 2𝑁)  =  3. Then, from theorem 5.12 (ii), We get 𝑃𝑁(𝐷3, 𝐷3) = [3 + 3]/[2(3)]  = 1. 

Remark.  In [10], 𝑃𝑁(𝐷3, 𝐷3)  has been denoted by 𝑃𝑁(𝐷3). We can obtain all the theorems of [10] from 

theorem 5.12 (i,ii).  

Theorem 5.14. Let D4 be dihedral group of degree 4.   Then, 

(i) 𝑃𝑁(𝐷4, 𝐷4) = 𝑃𝑁(𝐷4)  =  5/8, If N is odd and  

(𝑖𝑖) 𝑃𝑁(𝐷4, 𝐷4) = 𝑃𝑁(𝐷4) = 1 if N is even. 

Proof.  Let n = 4. If N is odd, then (n, 2N) = 2, (n, N) = 1 and (n, 2) = 2. Then from theorem 5.12(i) and theorem 

4.14(i), We get 𝑃𝑁(𝐷4, 𝐷4) =𝑃𝑁(𝐷4) = 10/16 = 5/8. If N is even, then (n, 2N) = 4. Then from theorem 5.12 (ii) 

and theorem 4.14(ii), We get 𝑃𝑁(𝐷4, 𝐷4) = 𝑃𝑁(𝐷4) = 8/8 = 1. 

6. The Subgroups Of Dihedral Group 

Definition 6.1. Let d be a positive integer such that 𝑑\𝑛 and 𝑘 = 𝑛/𝑑  or 𝑘𝑑 = 𝑛. Let O be the set of odd 

elements of 𝐷𝑛 and [2𝑡 + 1], [2𝑖 + 1] ∈ O. We define a relation ~ on O by [2𝑡 + 1]~ [2𝑖 + 1] ⟺ 2𝑑 divides 

(2𝑡 + 1 − 2𝑖 − 1) ⟺ 2𝑡 + 1 = 2𝑟𝑑 + 2𝑖 + 1, for some 𝑟 ∈ 𝑍. 
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Theorem 6.2.  The relation  ~ defined by definition 6.1 is an equivalence relation on O. If 𝑪𝒅[𝟐𝒊 + 𝟏] is the 

equivalence class by [𝟐𝒊 + 𝟏] ∈ 𝑶, then, 

(i) 𝐶𝑑[2𝑖 + 1] = {[2𝑟𝑑 + 2𝑖 + 1]|𝑟 ∈ 𝑍} = {[2𝑟𝑑 + 2𝑖 + 1]|0 ≤ 𝑟 < 𝑘}, 

(ii) |𝐶𝑑[2𝑖 + 1]| = 𝑘, and  

(iii) there are d distinct classes for 0 ≤ 𝑖 < 𝑑 .  

Proof. It is obvious that ~  is an equivalence relation on O.Then ~ decomposes O into disjoint equivalence  

classes. 

(i) Let 𝐶𝑑[2𝑖 + 1]   be the equivalence class by [2𝑖 + 1] ∈ O.  Then 𝐶𝑑[2𝑖 + 1] = {[2𝑡 + 1] ∈ O|[2𝑡 +

1]~[2𝑖 + 1]}. Let [2𝑡 + 1] ∈ 𝐶𝑑[2𝑖 + 1], implies [2𝑡 + 1]~[2𝑖 + 1]. Then from definition 6.1, We get 2𝑡 +

1 = 2𝑟𝑑 + 2𝑖 + 1, for some 𝑟 ∈ 𝑍,  implies [2𝑡 + 1] = [2𝑟𝑑 + 2𝑖 + 1],  for some 𝑟 ∈ 𝑍. Let 𝑟 ∈ 𝑍. Then 2𝑑 

divides (2𝑟𝑑 + 2𝑖 + 1 − 2𝑖 − 1). Then from definition 6.1, We get [2𝑟𝑑 + 2𝑖 + 1]~[2𝑖 + 1], implies [2𝑟𝑑 +

2𝑖 + 1] ∈ 𝐶𝑑[2𝑖 + 1]. Then it follows that 𝐶𝑑[2𝑖 + 1] = 

{[2𝑟𝑑 + 2𝑖 + 1]|𝑟 ∈ 𝑍}. Let 0 ≤ 𝑟1, 𝑟2 < 𝑘, 𝑟1 ≠ 𝑟2, implies, 0 ≤ 2𝑟1𝑑, 2𝑟2𝑑 < 2𝑘𝑑, 2𝑟1𝑑 ≠ 2𝑟2𝑑. Since 𝑘𝑑 =

𝑛, it follows that 0 ≤ 2𝑟1𝑑, 2𝑟2𝑑 < 2𝑛, 2𝑟1𝑑 ≠ 2𝑟2𝑑.  Then from lemma 3.6(ii), We get [2𝑟1𝑑] ≠ [2𝑟2𝑑]. Then  

from lemma 3.19 (iv), We get [2𝑟1𝑑 + 2𝑖 + 1] ≠ [2𝑟2𝑑 + 2𝑖 + 1]. Let 𝑟 ∈ 𝑍. Then by division algorithm We 

can write 𝑟 = 𝑞𝑘 + 𝑟1, 0 ≤ 𝑟1 < 𝑘 , implies 2𝑟𝑑 + 2𝑖 + 1 = 2𝑞𝑘𝑑 + 2𝑟1𝑑 + 2𝑖 + 1 = 2𝑛𝑞 + 2𝑟1𝑑 + 2𝑖 + 1. 

Then from lemma 3.6 (iii), We get, [2𝑟𝑑 + 2𝑖 + 1] = [2𝑛𝑞 + 2𝑟1𝑑 + 2𝑖 + 1] = [2𝑟1𝑑 + 2𝑖 + 1], 0 ≤ 𝑟1 < 𝑘. 

Then it follows that 𝐶𝑑[2𝑖 + 1] = {[2𝑟𝑑 + 2𝑖 + 1]|𝑟 ∈ 𝑍} = {[2𝑟𝑑 + 2𝑖 + 1]|0 ≤ 𝑟 < 𝑘} and |𝐶𝑑[2𝑖 + 1]| =

𝑘. 

(ii) It follows from proof of(i). 

(iii) Let there be 𝑙 distinct classes. From (ii) it follows that each class has k elements. Then, We get 𝑙𝑘 = |O|. 

Then from lemma 3.18 (iv), We get 𝑙𝑘 = 𝑛, implies 𝑙 = 𝑛/𝑘 = 𝑑.  𝐿𝑒𝑡 [2𝑡 + 1] ∈ O. By division algorithm We 

can write 𝑡 = 𝑞𝑑 + 𝑖, 0 ≤ 𝑖 < 𝑑, implies 2𝑡 + 1 = 2𝑞𝑑 + 2𝑖 + 1, 0 ≤ 𝑖 < 𝑑. Then from definition 6.1, We get 

[2𝑡 + 1]~[2𝑖 + 1], 0 ≤ 𝑖 < 𝑑, implies 𝐶𝑑[2𝑡 + 1] = 𝐶𝑑[2𝑖 + 1], 0≤ 𝑖 < 𝑑. Then (iii) follows. 

Theorem 6.3. The set of even elements of a subgroup H of  𝑫𝒏 is a subgroup of H. 

Proof.  Let H be a subgroup of  𝐷𝑛 . Let T be the set of even elements of H. Then [0] ∈ 𝐻, implies [0] ∈ 𝑇.  Let 

[2𝑟], [2𝑡] ∈ 𝑇.  implies [2𝑟], [2𝑡] ∈ 𝐻  implies, [2𝑟]. [2𝑡] ∈ 𝐻.  From definition 3.8(i), We get [2𝑟]. [2𝑡] =
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[2𝑟 + 2𝑡] = [2(𝑟 + 𝑡)] which is even element. Then it follows that [2𝑟]. [2𝑡]  ∈ 𝑇. Hence  𝑇 is closed and 

finite. Therefore 𝑇 is a subgroup of 𝐻. 

Theorem 6.4. Let [𝟐𝒓 + 𝟏], [𝟐𝒓]  ∈  𝐷𝑛. Then,  

(i) 𝑂([2𝑟 + 1]) = order of [2𝑟 + 1] = 2,  and 

(ii) 𝑂([2𝑟]) = 𝑛/(𝑛, 𝑟),   𝑟 ≥ 1. 

Proof. (i) From definition 3.8(ii), We get, 1[2𝑟 + 1] = [2𝑟 + 1], 2[2𝑟 + 1] = [2𝑟 + 1]. [2𝑟 + 1] = [−2𝑟 −

1 + 2𝑟 + 1] = [0], implies 𝑂([2𝑟 + 1]) = 2. 

(ii) Let 𝑂([2𝑟]) = 𝑚.  Then m is the  least positive integer such that 𝑚[2𝑟] = [0], implies [2𝑚𝑟] = [0] by 

lemma 3.19(i). Then from definition 3.1, We get 2𝑚𝑟 = 2𝑛𝑞 for some 𝑞 ∈ 𝑍, implies 𝑚 = (𝑛𝑞)/𝑟  where  𝑞 

is the least positive integer such that 𝑟 divides 𝑛𝑞. Let 𝑝 = (𝑛, 𝑟). Then We can write 𝑛 = 𝑝𝑙 and 𝑟 = 𝑝𝑎 where 

𝑙 and 𝑎 are relatively prime. Then 𝑚 = (𝑙𝑞)/𝑎  where 𝑞 is the least positive integer such that 𝑎 divides 𝑙𝑞. Then 

it follows that 𝑞 = 𝑎. Then 𝑚 = 𝑙 = 𝑛/𝑝 = 𝑛/(𝑛, 𝑟).  

Theorem 6.5.  Let [𝟐𝒄] ∈ 𝑫𝒏, 𝟏 ≤ 𝒄 and 𝑯 = {𝒓[𝟐𝒄]|𝒓 ∈ 𝒁}. Let 𝒌 = 𝒏/(𝒏, 𝒄) or 𝒌 (𝒏, 𝒄) = 𝒏. Then 𝑯 is 

cyclic subgroup of order 𝒌  and index 𝟐(𝒏, 𝒄)  given by  𝑯 = {𝒓[𝟐(𝒏, 𝒄)] = [𝟐𝒓(𝒏, 𝒄)]|𝒓 ∈ 𝒁} =

{𝒓[𝟐(𝒏, 𝒄)] = [𝟐𝒓(𝒏, 𝒄)]|𝟎 ≤ 𝒓 < 𝑘}, where 𝟐(𝒏, 𝒄) is the least positive even integer such that [𝟐(𝒏, 𝒄)] ∈ 𝑯. 

Proof. Let [2𝑐] ∈ 𝐷𝑛 , 1 ≤ c  and 𝐻 = {𝑟[2𝑐]|𝑟 ∈ 𝑍}.  Then it is obvious that 𝐻  is a cyclic subgroup 

generated by [2𝑐]. From theorem 6.4(ii), We get O([2𝑐]) = 𝑛/(𝑛, 𝑐). Let 𝑘 = 𝑛/(𝑛, 𝑐) or 𝑘(𝑛, 𝑐) = 𝑛. Then 

from theorem 6.4 (ii), We get O([2(𝑛, 𝑐)] = 𝑛/(𝑛, (𝑛, 𝑐)) = 𝑛/(𝑛, 𝑐).  Let c = (𝑛, 𝑐)𝑎.  Then 𝑎  and 𝑘  are 

relatively prime. Then by Euclid division algorithm, there exists integers 𝑥  and 𝑦  such that 𝑎𝑥 + 𝑘𝑦 = 1,  

implies, 𝑎𝑥 = 1 − 𝑘𝑦.  Let 𝑟 = 𝑘 + 𝑥.  Then from lemma 3.19(i), We get 𝑟[2𝑐] = [2𝑟𝑐] = [2(𝑘 + 𝑥)𝑐] =

[2(𝑘 + 𝑥)(𝑛, 𝑐)𝑎] = [2𝑘(𝑛, 𝑐)𝑎 + 2𝑥(𝑛, 𝑐)𝑎] = [2𝑛𝑎 + 2(𝑛, 𝑐)(1 − 𝑘𝑦)] = [2𝑛𝑎 + 2(𝑛, 𝑐) −

2(𝑛, 𝑐)𝑘𝑦] = [2𝑛𝑎 + 2(𝑛, 𝑐) − 2𝑛𝑦] = [2𝑛(𝑎 − 𝑦) + 2(𝑛, 𝑐)] = [2(𝑛, 𝑐)], by lemma 3.6(iii). Then it follows 

that [2(𝑛, 𝑐)] ∈ 𝐻.  Since O([2𝑐]) = O([2(𝑛, 𝑐)]) = 𝑘,  We get that 𝐻 = {𝑟[2(𝑛, 𝑐)]|𝑟 ∈ 𝑍} =

{𝑟[2(𝑛, 𝑐)]|0 ≤ 𝑟 < 𝑘}, |H| = k, index 𝐻 = 2𝑛/𝑘 = 2(𝑛, 𝑐). Since 𝑘(𝑛, 𝑐) = 𝑛, it follows that 2(𝑛, 𝑐) is the 

least positive even integer such that [2(𝑛, 𝑐)] ∈ 𝐻. From lemma 3.19(i), We get 𝑟[2(𝑛, 𝑐)] = [2𝑟(𝑛, 𝑐)]. 

Theorem 6.6.  Let 𝑯 be a subgroup of 𝑫𝒏 . Let 𝑯 contain even elements only and 𝟐𝒅 be the least positive 

even integer such that [𝟐𝒅] ∈ 𝑯. Then 𝒅\𝒏.  Let 𝑘 = 𝑛/𝑑 or k𝑑 = 𝑛. Then 𝐻 is a cyclic subgroup of index 2𝑑 

and order 𝑘  given by 

 𝐻 = {𝑟[2𝑑] = [2𝑟𝑑]|𝑟 ∈ 𝑍} = {𝑟[2𝑑] = [2𝑟𝑑]|0 ≤ 𝑟 < 𝑘}. 
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Proof.  Let [2𝑡] ∈ 𝐻. Then by division algorithm We can write 𝑡 = 𝑟𝑑 + 𝑖, 0 ≤ 𝑖 < 𝑑, implies, 2𝑡 − 2𝑟𝑑 =

2𝑖,   0 ≤ 𝑖 < 𝑑.  Now  [2𝑡], [2𝑑] ∈ 𝐻,  implies [2𝑡], 𝑟[2𝑑] ∈ 𝐻,  implies [2𝑡], [2𝑟𝑑] ∈ 𝐻,  by lemma 3.19(i). 

Then [2𝑡]. [2𝑟𝑑]−1 ∈ 𝐻.  Then from lemma 3.13(i) and definition 3.8 (i), We get [2𝑡]. [2𝑟𝑑]−1 =

[2𝑡]. [−2𝑟𝑑] = [2𝑡 − 2𝑟𝑑] ∈ 𝐻, implies [2𝑖] ∈ 𝐻. Since 2𝑑 is the least positive even integer such that [2𝑑] ∈

𝐻  and [2𝑖] ∈ 𝐻  such that 0 ≤ 2𝑖 < 2𝑑,  it follows that 2𝑖 = 0.  Then [2𝑡] = [2𝑟𝑑] = 𝑟[2𝑑].  Since 𝐻  is 

subgroup, so 𝑟[2𝑑] ∈ 𝐻∀𝑟 ∈ 𝑍. Therefore, 𝐻 = {𝑟[2𝑑]|𝑟 ∈ 𝑍}. Let 𝑘 = 𝑛/(𝑛, 𝑑) or 𝑘(𝑛, 𝑑) = 𝑛. Then from 

theorem 6.5 it follows that 𝐻 is a cyclic subgroup of index 2(n, d) and order 𝑘 given by 𝐻 = {𝑟[2(𝑛, 𝑑)] =

[2𝑟(𝑛, 𝑑)]|𝑟 ∈ 𝑍} ={𝑟[2(𝑛, 𝑑)] = [2𝑟(𝑛, 𝑑)]|0 ≤ 𝑟 < 𝑘}.  where 2(𝑛, 𝑑) is the least positive even integer such 

that [2(𝑛, 𝑑)]  ∈ 𝐻. 

Therefore   2(𝑛, 𝑑) = 2𝑑, implies (𝑛, 𝑑) = 𝑑,  Then it follows that 𝑘𝑑 = 𝑛 and 𝑑\𝑛. 

Note.   If 𝐻 = {[0]}, then 2𝑛 is the least positive even integer such that [2𝑛] ∈ 𝐻. 

Theorem 6.7. Let 𝐻 be a subgroup of 𝐷𝑛 and let 𝐻 contain both even and odd dements.  

Let 2d be the least positive even integer such that [2d] ∈ H. Then d\n. Let k = n/d or kd = n .  Then  H is  a 

dihedral subgroup of index d and order 2k given by 𝐻 = {𝑟[2𝑑]}|𝑟 ∈ 𝑍} ∪ 𝐶𝑑[2𝑙 + 1] = {[2𝑟𝑑], [2𝑟𝑑 + 2𝑙 +

1]|𝑟 ∈ 𝑍} = {[2𝑟𝑑], [2𝑟𝑑 + 2𝑙 + 1]|0≤ 𝑟 < 𝑘}.  

Where [2𝑙 + 1] is any odd element of 𝐻. In particular there exists [2𝑖 + 1] ∈ 𝐻 such that 0 ≤ 𝑖 < 𝑑 and 𝐻 =

{[2𝑟𝑑], [2𝑟𝑑 + 2𝑖 + 1]|0 ≤ 𝑖 < 𝑘}. 

Proof.  Let 𝐻 be a subgroup of 𝐷𝑛 and let 𝐻 contain both even and odd elements. Let 𝑇 be the set of even 

elements of 𝐻. Then from theorem 6.3 it follows that 𝑇 is a subgroup of 𝐻. Then 𝑇 is also a subgroup of 𝐷𝑛. 

Let 2𝑑 be the least positive even integer such that [2𝑑] ∈ 𝑇. Then from theorem 6.6 it follows that  𝑑\𝑛 . Let 

𝑘 = 𝑛/𝑑 or 𝑘𝑑 = 𝑛. Then from theorem 6.6 it follows that 𝑇 is a cyclic subgroup of index 2𝑑 and order 𝑘 and 

𝑇 = {𝑟[2𝑑]|𝑟 ∈ 𝑍} = {[2𝑟𝑑]|0 ≤ 𝑟 < 𝑘}.  

Let [2𝑙 + 1 ]  be any  odd element of 𝐻 . Then from theorem 6.2, We get 𝐶𝑑[2𝑙 + 1] =

{[2𝑟𝑑 + 2𝑙 + 1]|𝑟 ∈ 𝑍} = {[2𝑟𝑑 + 2𝑙 + 1]|0 ≤ 𝑟 < 𝑘}  and |𝐶𝑑[2𝑙 + 1]| = 𝑘.  Let [2𝑡 + 1] ∈ 𝐻.  Then [2𝑙 +

1]. [2𝑡 + 1] ∈ 𝐻. Then from definition 3.8(ii),We get [−2𝑙 + 2𝑡] ∈ 𝐻,  implies [2𝑡 − 2𝑙] ∈ 𝑇,  implies [2𝑡 −

2𝑙] = [2𝑟𝑑]  for some 𝑟 ∈ 𝑍 . Then from lemma 3.19(iv), We get [2𝑡 + 1] = [2𝑟𝑑 + 2𝑙 + 1], implies 

[2𝑡 + 1] ∈ 𝐶𝑑[2𝑙 + 1].  Now [2𝑑], [2𝑙 + 1] ∈ 𝐻, implies [2𝑙 + 1]. 𝑟[2𝑑] ∈ 𝐻 ∀ 𝑟 ∈ 𝑍.  Then from lemma 

3.19(i) and definition 3.8(i), We get [2𝑟𝑑 + 2𝑙 + 1] ∈ 𝐻 ∀ 𝑟 ∈ 𝑍. Then it follows that 𝐻 = 𝑇 ∪ 𝐶𝑑[2𝑙 + 1] =
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{[2𝑟𝑑]|𝑟 ∈ 𝑍} ∪ 𝐶𝑑[2𝑙 + 1] =  {[2𝑟𝑑],   [2𝑟𝑑 + 2𝑙 + 1]|𝑟 ∈ 𝑍} =  {[2𝑟𝑑], [2𝑟𝑑 + 2𝑙 + 1]|0 ≤ 𝑟 < 𝑘}   and 

|𝐻| = 𝑘 + 𝑘 = 2𝑘.  By division algorithm, We can write 𝑙 = 𝑟𝑑 + 𝑖, 0 ≤ 𝑖 < 𝑑,  implies 2𝑙 + 1 = 2𝑟𝑑 + 2𝑖 +

1. Then from definition 6.1, We get [2𝑙 + 1]~[2𝑖 + 1], implies 𝐶𝑑[2𝑙 + 1] = 𝐶𝑑[2𝑖 + 1]. Then it follows that 

𝐻 = {[2𝑟𝑑], [2𝑟𝑑 + 2𝑖 + 1]|0 ≤ 𝑟 < 𝑘}, [2𝑖 + 1] ∈ 𝐻, 0 ≤ 𝑖 < 𝑑. Let 𝐷𝑘  be dihedral group of degree k. Let 

[s]  ∈ 𝐷𝑘.  Then [𝑠] will be denoted by [𝑠]𝑘.  Therefore, 𝐷𝑘 = {[2𝑟]𝑘, [2𝑟 + 1]𝑘|0 ≤ 𝑟 < 𝑘}.  We define a 

mapping  𝑓: 𝐷𝑘 → 𝐻 by f([2𝑟]𝑘) = [2𝑟𝑑] and 𝑓([2𝑟 + 1]𝑘) =[2𝑟𝑑 + 2𝑖 + 1]. Then using definition 3.8 (i, ii) 

and definition of  𝑓 We get the following: 

(i) 𝑓([2𝑟]𝑘. [2𝑡]𝑘) = 𝑓([2𝑟 + 2𝑡]𝑘) = [(2𝑟 + 2𝑡)𝑑] 

 = [2𝑟𝑑 + 2𝑡𝑑] = [2𝑟𝑑]. [2𝑡𝑑] = 𝑓([2𝑟]𝑘)𝑓([2𝑡]𝑘), 

(ii) 𝑓([2𝑟]𝑘. [2𝑡 + 1]𝑘) = 𝑓([−2𝑟 + 2𝑡 + 1]𝑘) = 𝑓([2(−𝑟 + 𝑡) + 1]𝑘) 

 = [2(−𝑟 + 𝑡)𝑑 + 2𝑖 + 1] = [−2𝑟𝑑 + 2𝑡𝑑 + 2𝑖 + 1] = [2𝑟𝑑]. [2𝑡𝑑 + 2𝑖 + 1] 

 = 𝑓([2𝑟]𝑘)𝑓([2𝑡 + 1]𝑘), 

(iii) 𝑓([2𝑟 + 1]𝑘. [2𝑡]𝑘) = 𝑓([2𝑟 + 1 + 2𝑡]𝑘) = 𝑓([2(𝑟 + 𝑡) + 1]𝑘) = [2(𝑟 + 𝑡)𝑑 + 2𝑖 + 1] = [2𝑟𝑑 +

2𝑡𝑑 + 2𝑖 + 1] = [2𝑟𝑑 + 2𝑖 + 1]. [2𝑡𝑑] = 𝑓([2𝑟 + 1]𝑘)𝑓([2𝑡]𝑘), 

(iv) 𝑓([2𝑟 + 1]𝑘. [2𝑡 + 1]𝑘) = 𝑓([−2𝑟 + 2𝑡]𝑘) =𝑓([2(−𝑟 + 𝑡)]𝑘) 

 =[2(−𝑟 + 𝑡)𝑑] = [−2𝑟𝑑 − 2𝑖 − 1 + 2𝑡𝑑 + 2𝑖 + 1] 

 = [2𝑟𝑑 + 2𝑖 + 1]. [2𝑡𝑑 + 2𝑖 + 1] = 𝑓([2𝑟 + 1]𝑘)𝑓([2𝑡 + 1]𝑘). 

Then it follows that 𝑓 is homomorphism. Also it is obvious that 𝑓 is one-one and onto. Then it follows that 

𝐷𝑘 ≅ 𝐻 and hence 𝐻 is a dihedral subgroup. 

Theorem 6.8.  Every subgroup of 𝑫𝒏 is cyclic or dihedral. A complete listing of all subgroups of 𝑫𝒏 is 

as follows: 

(i) For each 𝑑 such that 𝑑\𝑛 and 𝑘 = 𝑛/𝑑 or 𝑘𝑑 = 𝑛 there exists exactly one cyclic subgroup of index 2𝑑 

and order 𝑘 given by 

 𝐶𝑘
𝑛 = {𝑟[2𝑑]|𝑟 ∈ 𝑍} = {[2𝑟𝑑]|0 ≤ 𝑟 < 𝑘}, 

 where 2𝑑  is the least positive even integer such that [2𝑑] ∈  𝐶𝑘
𝑛. 

(ii) For each 𝑑 such that 𝑑\𝑛 and 𝑘 = 𝑛/𝑑 there are exactly 𝑑 dihedral subgroups of index 𝑑 and order 2𝑘 

given by 

 𝐷𝑘
𝑛   = {𝑟[2𝑑]|𝑟 ∈ 𝑍} ∪ 𝐶𝑑[2𝑖 + 1] 
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  =  {[2𝑟𝑑], [2𝑟𝑑 + 2𝑖 + 1]|𝑟 ∈ 𝑍} 

  =  {[2𝑟𝑑], [2𝑟𝑑 + 2𝑖 + 1]|0 ≤ 𝑟 < 𝑘}, 

 where 2𝑑 is the least positive even integer such that [2𝑑] ∈ 𝐷𝑘
𝑛 and [2𝑖 + 1] is any odd element of O 

or 𝐷𝑛. But only 𝑑 subgroups will be obtained for 0 ≤ 𝑖 < 𝑑. 

Proof . Let 𝐻 be a subgroup of 𝐷𝑛. Since [0] ∈ 𝐻 and [0] is even element, so there are  only two cases. Either 

𝐻 contains only even elements or 𝐻 contains even and odd elements both. Then from theorem 6.6 and 

theorem 6.7 it  follows that 𝐻 is either cyclic or dihedral and 𝐻 will be obtained from (i) and (ii) for some 𝑑 

such that  𝑑\𝑛.So all subgroups of 𝐷𝑛 will  be obtained from (i) and (ii) for different values of  𝑑 such that 

𝑑\𝑛. 

(i) Let 𝑑\𝑛 and 𝑘 = 𝑛/𝑑 or 𝑘𝑑 = 𝑛. Let 𝐶𝑘
𝑛 = {𝑟[2𝑑]|𝑟 ∈ 𝑍}. Since 𝑑\𝑛, implies (𝑛, 𝑑) = 𝑑 and 

𝑛/(𝑛, 𝑑) = 𝑛/𝑑 = 𝑘. Then from theorem 6.5, We get (i).  

(ii) Let 𝑑\𝑛 and 𝑘 = 𝑛/𝑑 or 𝑘𝑑 = 𝑛. Let 𝑇 = {𝑟[2𝑑]|𝑟 ∈ 𝑍}. Then form(i) it follows that  

 T ={𝑟[2𝑑] = [2𝑟𝑑]|0 ≤ 𝑟 < 𝑘}, |𝑇| = 𝑘 and 2d is the least positive even integer such that [2𝑑] ∈ 𝑇. 

Let [2𝑖 + 1] ∈ O. Then from theorem 6.2, We get 𝐶𝑑[2𝑖 + 1] = {[2𝑟𝑑 + 2𝑖 + 1]|𝑟 ∈ 𝑍} =

{[2𝑟𝑑 + 2𝑖 + 1]|0 ≤ 𝑟 < 𝑘} and  

 |𝐶𝑑[2𝑖 + 1]| = 𝑘.  Let 𝐷𝑘
𝑛 = 𝑇 ∪ 𝐶𝑑[2𝑖 + 1] = {[2𝑟𝑑], [2𝑟𝑑 + 2𝑖 + 1]|0 ≤ 𝑟 < 𝑘} =

 {[2𝑟𝑑], [2𝑟𝑑 + 2𝑖 + 1]|𝑟 ∈ 𝑍}. Then |𝐷𝑘
𝑛| = |𝑇| + |𝐶𝑑[2𝑖 + 1]| = 𝑘 + 𝑘 = 2𝑘. 

 Let [2𝑟𝑑], [2𝑡𝑑] ∈  𝐷𝑘
𝑛 . Then from definition 3.8 (i). We get [2𝑟𝑑]. [2𝑡𝑑] = [2𝑟𝑑 + 2𝑡𝑑] = [2(𝑟 +

𝑡)𝑑] ∈  𝐷𝑘
𝑛.  𝐿𝑒𝑡 [2𝑟𝑑], [2𝑡𝑑 + 2𝑖 + 1]  ∈  𝐷𝑘

𝑛 . Then form definition 3.8 (i, ii), We get [2𝑟𝑑]. [2𝑡𝑑 +

2𝑖 + 1] = [2(𝑡 − 𝑟)𝑑 + 2𝑖 + 1] ∈  𝐷𝑘
𝑛  and [2𝑡𝑑 + 2𝑖 + 1]. [2𝑟𝑑] = [2(𝑡 + 𝑟)𝑑 + 2𝑖 + 1] ∈  𝐷𝑘

𝑛.  Let 

[2𝑟𝑑 + 2𝑖 + 1], [2𝑡𝑑 + 2𝑖 + 1] ∈  𝐷𝑘
𝑛 . Then from definition 3.8 (ii), We get [2𝑟𝑑 + 2𝑖 + 1]. [2𝑡𝑑 +

2𝑖 + 1] = [2(𝑡 − 𝑟)𝑑] ∈  𝐷𝑘
𝑛. It follows that  𝐷𝑘

𝑛 is closed and finite subset of 𝐷𝑛. So 𝐷𝑘
𝑛 is a subgroup 

of index 𝑑 and order 2𝑘. From theorem 6.7 it follows that 𝐷𝑘
𝑛 is dihedral. From theorem 6.2, it follows 

that there are 𝑑 distinct classes 𝐶𝑑[2𝑖 + 1] for 0 ≤ 𝑖 < 𝑑. So, We get  𝑑 distinct dihedral subgroups. 

Theorem 6.9.  A complete listing of all normal subgroups of 𝑫𝒏 is as follows: 

(i) For each 𝑑 such that 𝑑\𝑛 and 𝑘 = 𝑛/𝑑 or 𝑘𝑑 = 𝑛 there exists exactly one cyclic normal subgroup of 

index 2𝑑 and order 𝑘 given by 
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 𝐶𝑘
𝑛 = {𝑟[2𝑑]|𝑟 ∈ 𝑍} = {[2𝑟𝑑]|0 ≤ 𝑟 < 𝑘}, 𝑤ℎ𝑒𝑟𝑒 2d is the least positive even integer such that [2𝑑] ∈

 𝐶𝑘
𝑛. 

(ii) If 𝑛 is odd there exists exactly one dihedral normal subgroup namely 𝐷𝑛 itself. 

(iii) If 𝑛 is even there exists exactly three dihedral normal subgroups given by 

 (a) 𝐷𝑛 = {[2𝑟], [2𝑟 + 1]|0 ≤ 𝑟 < 𝑛}, of order 2𝑛,  

 (b) 𝐷𝑛/2
𝑛 = {[4𝑟], [4𝑟 + 1]|𝑟 ∈ 𝑍} = {[4𝑟], [4𝑟 + 1]|0 ≤ 𝑟 < 𝑛/2}, of order  𝑛, and  

 (c) 𝐷𝑛/2
𝑛 = {[4𝑟], [4𝑟 + 3]|𝑟 ∈ 𝑍} = {[4𝑟], [4𝑟 + 3]|0 ≤ 𝑟 < 𝑛/2},  of order 𝑛. 

Proof.    All subgroups of 𝐷𝑛  are given by theorem 6.8(i,ii). Let 𝑑\𝑛 and 𝑘 = 𝑛/𝑑 or 𝑘𝑑 = 𝑛. Then from 

theorem 6.8(i), We get 𝐶𝑘
𝑛 = {𝑟[2𝑑]|𝑟 ∈ 𝑍} = {[2𝑟𝑑]|0 ≤ 𝑟 < 𝑘}. Let [2𝑟𝑑] ∈ 𝐶𝑘

𝑛 and [2𝑡] ∈ 𝐷𝑛. Then 

using definition 3.8(i) and lemma 3.13(i), We get [2𝑡]. [2𝑟𝑑]. [2𝑡]−1 = [2𝑡 + 2𝑟𝑑 − 2𝑡] = [2𝑟𝑑] ∈ 𝐶𝑘
𝑛. 

Let [2𝑡 + 1]  ∈ 𝐷𝑛  and [2𝑟𝑑] ∈ 𝐶𝑘
𝑛.  Then using definition 3.8 (ii) and lemma 3.13 (ii), We get 

[2𝑡 + 1]. [2𝑟𝑑]. [2𝑡 + 1]−1 = [−2𝑡 − 1 − 2𝑟𝑑 + 2𝑡 + 1] = [−2𝑟𝑑] = [2(−𝑟)𝑑] ∈ 𝐶𝑘
𝑛. Then it follows 

that 𝐶𝑘
𝑛  is normal subgroup of 𝐷𝑛  and We get(i). From theorem 6.8(ii), We get 𝐷𝑘

𝑛 =

{[2𝑟𝑑], [2𝑟𝑑 + 2𝑖 + 1]|𝑟 ∈ 𝑍} =  {[2𝑟𝑑], [2𝑟𝑑 + 2𝑖 + 1]|0 ≤ 𝑟 < 𝑘} = {[2𝑟𝑑]|𝑟 ∈ 𝑍} ∪ 𝐶𝑑[2𝑖 +

1], 0 ≤ 𝑖 < 𝑑  and  |𝐷𝑘
𝑛| = 2k. Let [2𝑡], [2𝑡 + 1] ∈ 𝐷𝑛  and [2𝑟𝑑], [2𝑟𝑑 + 2𝑖 + 1] ∈  𝐷𝑘

𝑛.  Then using 

definition 3.8(i,ii) and lemma 3.13(i,ii), We get [2𝑡]. [2𝑟𝑑]. [2𝑡]−1 = [2𝑡 + 2𝑟𝑑 − 2𝑡]= [2𝑟𝑑] ∈  𝐷𝑘
𝑛, 

[2𝑡 + 1]. [2𝑟𝑑]. [2𝑡 + 1]−1 = [−2𝑡 − 1 − 2𝑟𝑑 + 2𝑡 + 1] = [2(−𝑟)𝑑] ∈  𝐷𝑘
𝑛,   [2𝑡]. [2𝑟𝑑 + 2𝑖 +

1]. [2𝑡]−1 = [−2𝑡 + 2𝑟𝑑 + 2𝑖 + 1 − 2𝑡] = [−4𝑡 + 2𝑟𝑑 + 2𝑖 + 1]  and [2𝑡 + 1]. [2𝑟𝑑 + 2𝑖 + 1]. [2𝑡 +

1]−1 = [4𝑡 − 2𝑖 + 1 − 2𝑟𝑑]. 𝐷𝑘
𝑛  will be normal subgroup if and only if [−4𝑡 + 2𝑟𝑑 + 2𝑖 + 1], [4𝑡 −

2𝑖 + 1 − 2𝑟𝑑] ∈ 𝐶𝑑[2𝑖 + 1] for every 0 ≤ 𝑡 < 𝑛 for every r∈ 𝑍.Then from  theorem 6.1, We get that 𝐷𝑘
𝑛 

is normal subgroup if and only if 2𝑑\(−4𝑡 + 2𝑟𝑑 + 2𝑖 + 1 − 2𝑖 − 1)  and 2𝑑\(4𝑡 − 2𝑖 + 1 − 2𝑟𝑑 −

2𝑖 − 1) for every  0 ≤ 𝑡 < 𝑛 and for every 𝑟 ∈ 𝑍, if and only if 2𝑑\4(−𝑡) and  2𝑑\4(𝑡 − 𝑖) for every  

0 ≤ 𝑡 < 𝑛,  if and only if 𝑑\2. If n is odd, then 𝑑\𝑛  and 𝑑\2,  implies 𝑑 = 1.  Then 0 ≤ 𝑖 <

𝑑, implies  0 ≤ 𝑖 < 1 , implies i = 0. Then 𝑘 = 𝑛/𝑑 = 𝑛/1 = 𝑛  and 𝐷𝑘
𝑛 = 𝐷𝑛

𝑛 =

{[2𝑟], [2𝑟 + 1]|0 ≤ 𝑟 < 𝑛} = 𝐷𝑛 and We get(ii). If 𝑛 is even, then 𝑑\𝑛 and 𝑑\2, implies 𝑑 = 1, 2. For 

𝑑 = 1, We get  𝐷𝑘
𝑛 = 𝐷𝑛

𝑛 = {[2𝑟], [2𝑟 + 1]|0 ≤ 𝑟 < 𝑛} =𝐷𝑛  which is (iii)(a). If 𝑑 = 2, Then 𝑘 = 𝑛/2 

and 0 ≤ 𝑖 < 𝑑,  implies 0 ≤ 𝑖 < 2,  implies  𝑖 = 0,1. For 𝑖 = 0,   

 We get 𝐷𝑘
𝑛 = 𝐷𝑛/2

𝑛 = {[4𝑟], [4𝑟 + 1]|0 ≤ 𝑟 < 𝑛/2}  
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which is (iii)(b). For 𝑖 = 1, We get 𝐷𝑘
𝑛 = 𝐷𝑛/2

𝑛 = {[4𝑟], [4𝑟 + 3]|0 ≤ 𝑟 < 𝑛/2} which is (iii)(c). 

Theorem 6.10. Let 𝒁(𝐷𝑛)  denote the center of 𝐷𝑛(𝑛 ≥ 3). Then, 

(i) Z(𝐷𝑛) = {[0]}, if 𝑛 is odd, and    

(ii) Z(𝐷𝑛) = {[0], [𝑛]}, if 𝑛 is even. 

Proof. Let [2𝑡 + 1] ∈  𝐷𝑛. Let [2𝑡 + 1]. [2] = [2]. [2𝑡 + 1]. 

Then using definition 3.8 (i, ii), lemma 3.19(iv) and definition 3.1, We get [2𝑡 + 3] = [2𝑡 − 1], implies, [4] =

[0], implies 2𝑛\4, implies, 𝑛 = 1,2. So it follows that [2𝑡 + 1] ∉ 𝑍(𝐷𝑛) if 𝑛 ≥ 3. Let [2𝑡], [2𝑟] ∈  𝐷𝑛. Then 

from definition 3.8(i),We get [2𝑡]. [2𝑟] = [2𝑡 + 2𝑟] = [2𝑟]. [2𝑡].  Let [2𝑟 + 1] ∈  𝐷𝑛  and [2𝑡]. [2𝑟 + 1] =

[2𝑟 + 1]. [2𝑡]. Then using definition 3.8(i,ii) and lemma 3.19(i,iv), We get [2𝑟 + 1 − 2𝑡] = [2𝑡 + 2𝑟 + 1], 

implies [4𝑡] = [0], implies 2[2𝑡] = [0]. Then using lemma 4.7, We get [2𝑡] = [2𝑣𝑐], 0 ≤ 𝑣 < 𝑝, 𝑝 = (𝑛, 2) 

and 𝑐 = 𝑛/𝑝.  If 𝑛  is odd, then 𝑝 = (𝑛, 2) = 1.  Then [2𝑡] = [0].  Then We get (i). If 𝑛  is even, then 𝑝 =

(𝑛, 2) = 2. Then [2𝑡] = [2𝑣𝑐], 0 ≤ 𝑣 < 2, 𝑐 = 𝑛/2,  implies [2𝑡] = [0], [𝑛]. Then We get (ii). 

Theorem 6.11.  The commutator subgroup of  𝐷𝑛  is given by 𝐷𝑛
, = {𝑟[2(𝑛, 2)]|𝑟 ∈ 𝑍} =

{[2𝑟(𝑛, 2)]|0 ≤ 𝑟 < 𝑛/(𝑛, 2)}. 

Proof.   Let [2𝑡], [2𝑡 + 1], [2𝑟], [2𝑟 + 1] ∈  𝐷𝑛. Then using definition 3.8(i,ii) and lemma 3.13(i,ii), We get 

[2𝑡]. [2𝑟]. [2𝑡]−1. [2𝑟]−1 = [0], [2𝑡]. [2𝑟 + 1]. [2𝑡]−1. [2𝑟 + 1]−1 

=  [0], [2𝑟 + 1]. [2𝑡]. [2𝑟 + 1]−1. [2𝑡]−1 = [−4𝑡]  and [2𝑡 + 1]. [2𝑟 + 1]. [2𝑡 + 1]−1. [2𝑟 + 1]−1 = [4(𝑟 −

𝑡)].  Since [2𝑡], [2𝑟]  ∈  𝐷𝑛 ,  ∀𝑡, 𝑟 ∈ 𝑍.  So, if 𝐻  is the set of all commutators of 𝐷𝑛,  then 𝐻 =

{[0], [−4𝑡], [4(𝑟 − 𝑡)]|𝑟, 𝑡 ∈ 𝑍}. Then it follows that 𝐻 = {𝑟[4]|𝑟 ∈ 𝑍} = {𝑟[2(2)]|𝑟 ∈ 𝑍}. Then from theorem 

6.5, it follows that 𝐻 is a cyclic subgroup of index 2(𝑛, 2) and order 𝑛/(𝑛, 2) given by 

𝐻 = {𝑟[2(𝑛, 2)]|𝑟 ∈ 𝑍}={[2𝑟(𝑛, 2)]|0 ≤ 𝑟 < 𝑛/(𝑛, 2)}. 

Since the commutator subgroup 𝐷𝑛 is the subgroup generated by the commutators. Therefore 𝐷𝑛
′ = 𝐻. 

Theorem 6.12.  Let 𝒌 be a positive integer and 𝑯 = {[𝟐𝒕] ∈ 𝐷𝑛|𝒌[𝟐𝒕] = [𝟎]}. Then 𝐻 is a cyclic subgroup 

of order (𝑛, 𝑘) and index (2𝑛) /(𝑛, 𝑘) given by  

𝐻 = {𝑟[2𝑐]|𝑟 ∈ 𝑍, 𝑐 = 𝑛/(𝑛, 𝑘)} = {[2𝑟𝑐]|0 ≤ 𝑟 < (𝑛, 𝑘), 𝑐 = 𝑛/(𝑛, 𝑘)}. 

Proof.    Let 𝐻 = {[2𝑡] ∈ 𝐷𝑛|𝑘[2𝑡] = [0]}. Then using lemma 4.7, We get   

𝐻 = {[2𝑟𝑐] = 𝑟[2𝑐]|0 ≤ 𝑟 < (𝑛, 𝑘), 𝑐 = 𝑛/(𝑛, 𝑘)}.  Since 𝑐(𝑛, 𝑘) = 𝑛, So from theorem 6.8 (i), it follows that 

𝐻 is a cyclic subgroup of index 2𝑐 = (2𝑛)/(𝑛, 𝑘) and order (𝑛, 𝑘). 
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Theorem 6.13.  Let 𝒌 be a positive integer . Let  kE 

 ={𝑘[2𝑡]|[2𝑡] ∈ 𝐸} and 𝐸𝑘 = {[2𝑡] ∈ 𝐸|𝑘[2𝑡]. [2𝑟 + 1] = [2𝑟 + 1]. 𝑘[2𝑡], ∀ [2𝑟 + 1] ∈ O}. Then, 

(i) kE is a cyclic subgroup of E given by 

 𝑘𝐸 = {𝑟[2(𝑛, 𝑘)]|𝑟 ∈ 𝑍} = {[2𝑟(𝑛, 𝑘)]|0 ≤ 𝑟 < 𝑛/(𝑛, 𝑘)},  

 |𝑘𝐸| = 𝑛/(𝑛, 𝑘), 

(ii)  𝐸𝑘 is a cyclic subgroup of  𝐸 given by 

 𝐸𝑘 = {𝑟[2𝑐]|0 ≤ 𝑟 < (𝑛, 2𝑘), 𝑐 = 𝑛 /(𝑛 , 2𝑘)}, 

 |𝐸𝑘| = (𝑛, 2𝑘), 

(iii) 𝑘𝐸𝑘 is a cyclic subgroup of kE given by 

 𝑘𝐸𝑘 = {𝑟[2𝑘𝑐]|0 ≤ 𝑟 < (𝑛, 2𝑘)/(𝑛, 𝑘),   𝑐 = 𝑛(𝑛, 𝑘)/(𝑛, 2𝑘)}, 

 |𝑘𝐸𝑘| = (𝑛, 2𝑘)/(𝑛, 𝑘), 

(iv) |𝐶𝑘
1(𝐸 × 𝑂)| = |𝐶1

𝑘(𝑂 × 𝐸)| = |𝐸𝑘 × 𝑂| = |𝐸𝑘||𝑂| = (𝑛, 2𝑘)𝑛, and 

(v) |𝐶(𝑘𝐸 × 𝑂)| = |𝐶(𝑂 × 𝑘𝐸)| = |(𝑘𝐸𝑘 × 𝑂)| = |𝑘𝐸𝑘||𝑂| = (𝑛, 2𝑘)𝑛 / (𝑛, 𝑘). 

Proof. Let E be the set of even elements of 𝐷𝑛.   

Then from lemma 3.18(i) and lemma 3.19 (i), We get 𝐸 = {[2𝑟]|0 ≤ 𝑟 < 𝑛} = {𝑟[2]|𝑟 ∈ 𝑍} and |𝐸| = 𝑛. 

From theorem 6.5, it follows that 𝐸 is a cyclic subgroup of 𝐷𝑛. Let 𝑘 be a positive integer and  

𝑘𝐸 = {𝑘 [2𝑡]|[2𝑡] ∈𝐸}. Then using theorem 3.19 (i), We get 𝑘𝐸 =  {𝑡[2𝑘]|[2𝑡] ∈ 𝐸 𝑜𝑟  𝑡 ∈ 𝑍} and 𝑘𝐸 ⊆ 𝐸. 

Then from theorem 6.5, it follows that 𝑘𝐸 is a cyclic subgroup and 

𝑘𝐸 = {𝑡[2(𝑛, 𝑘)]|𝑡 ∈ 𝑍} = {[2𝑡(𝑛, 𝑘)]|0 ≤ 𝑡 < 𝑛/ (𝑛, 𝑘)},   |𝑘𝐸| = 𝑛 / (𝑛, 𝑘) which is (i).  

Let 𝐸𝑘 = {[2𝑡] ∈ 𝐸|𝑘[2𝑡]. [2𝑟 + 1] = [2𝑟 + 1]. 𝑘[2𝑡] ∀ [2𝑟 + 1] ∈ 𝑂} . Then using definition 3.8(i,ii) and 

lemma 3.19 (i, iv), We get 𝐸𝑘 = {[2𝑡] ∈ 𝐸|2𝑘[2𝑡] = [0]}. Then using theorem 6.12, it follows that  𝐸𝑘 is a 

cyclic subgroup of 𝐸 and 𝐸𝑘 = {𝑟 [2𝑐]|0 ≤ 𝑟 < (𝑛, 2𝑘), 𝑐 = 𝑛/(𝑛, 2𝑘)},  |𝐸𝑘| = (𝑛, 2𝑘) which is (ii).  Then 

using lemma 3.19(i), We get  

𝑘𝐸𝑘 = {𝑘[2𝑟𝑐]|0 ≤ 𝑟 < (𝑛, 2𝑘), 𝑐 = 𝑛/(𝑛, 2𝑘)}= {𝑟[2𝑘𝑐]|0 ≤ 𝑟 < (𝑛, 2𝑘)   𝑜𝑟  𝑟 ∈ 𝑍,   𝑐 = 𝑛/(𝑛, 2𝑘)}. 

Then clearly 𝑘𝐸𝑘  ⊆ 𝑘𝐸.  Now (𝑛, 𝑘𝑐) = (𝑛, 𝑘𝑛/(𝑛, 2𝑘))  = (𝑛(𝑛, 2𝑘) / (𝑛, 2𝑘), 𝑘𝑛/(𝑛, 2𝑘)) 

= {𝑛 / (𝑛, 2𝑘)}((𝑛, 2𝑘), 𝑘) = {𝑛/(𝑛, 2𝑘)}(𝑛, 𝑘)  = 𝑛 (𝑛, 𝑘)/ (𝑛, 2 𝑘) , implies,  𝑛/(𝑛, 𝑘𝑐)  = (𝑛, 2𝑘)  / (𝑛, 𝑘). 

Then from theorem 6.5, it follows that 𝑘𝐸𝑘 is a cyclic subgroup of 𝑘𝐸 and 𝑘𝐸𝑘 = {𝑟 [2𝑛 (𝑛, 𝑘) /(𝑛, 2𝑘)]|0 ≤

𝑟 < (𝑛, 2𝑘)/(𝑛, 𝑘)}, 
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|𝑘𝐸𝑘| = (𝑛, 2𝑘)/ (𝑛, 𝑘) which is (iii). Using definition 4.2, lemma 4.5, (ii), |O| = 𝑛 and definition of  𝐸𝑘 , We 

get (iv). Using definition 5.2, (iii), definition of 𝑘𝐸, definition of 𝑘𝐸𝑘 and |O| = 𝑛,  We get (v). 

 

Conclusion 

 Dihedral group 𝐷𝑛  of degree n has a new representation as a group of residue classes. This new 

representation will help us to study any property of dihedral groups. The (N, M)-th commutativity degree  

𝑃𝑁
𝑀(𝐷𝑛)     and the relative (N, M)-th commutativity degree 𝑃𝑁

𝑀(𝐷𝑛, 𝐷𝑛) for  all N, M and n have been obtained. 

Also all subgroups, all normal subgroups, the center and commutator subgroup have been obtained. 
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