SOME PROPERTIES OF DIHEDRAL GROUP REPRESENTING AS A GROUP OF RESIDUE CLASSES

SUBHASH CHANDRA SINGH
Kunwar Singh Inter College, Civil line, District: Ballia, State : Uttar Pradesh, Country : India, Pin: 277001
Gmail : drsubhash4321@gmail.com

The aim of this paper is to introduce a new representation of dihedral group D_{n} of degree n as a group of residue classes and study its properties. We find the (N, M)-th Commutativity degree $P_{N}^{M}\left(D_{n}\right)$ for all positive integers N, M and $\mathrm{n} . P_{N}^{M}\left(D_{n}\right)$ is the probability of a random pair (x, y) of $D_{n} \times D_{n}$ so that $x^{N} y^{M}=y^{M} x^{N}$. Let $D_{n}^{K}=\left\{a^{K} \mid a \in D_{n}\right\}$ for a positive integer K. Further We find the relative (N, M)-th commutativity degree $P_{N}^{M}\left(D_{n}, D_{n}\right)=P\left(D_{n}^{N}, D_{n}^{M}\right)$ for all positive integers N, M and $\mathrm{n} . P_{N}^{M}\left(D_{n}, D_{n}\right)$ is the probability that a random element of D_{n}^{N} commutes with a random element of D_{n}^{M}. Finally We find all subgroups, all normal subgroups, the center and the commutator subgroup of D_{n}.

1. Introduction

Conrad [4] defined dihedral group D_{n} as a result of reflection and rotation operations. All the properties of D_{n} are proven by geometry approach. In this paper, We represent D_{n} as a group of residue classes. Then it becomes very easy to study any property of D_{n}. Erodos and Turan [8], and, Gustofson [9] introduced the concept of the commutativity degree $\mathrm{P}(\mathrm{G}) . \mathrm{P}(\mathrm{G})$ is the probability that a random element of G commutes with a random element of G. Sarmin and Mohamad [7] extended the concept of the commutativity degree $\mathrm{P}(\mathrm{G})$ as the N -th

[^0]commutativity degree $P_{N}(G)$ for a positive integer $\mathrm{N} . P_{N}(G)$ is the probability of a random pair (x, y) of $\mathrm{G} \times \mathrm{G}$ so that $x^{N} y=y x^{N}$. Ali and Sarmin [6], and, Azizi and Dostie [2] defined the same $P_{N}(G)$. In this paper, We extend the concept of the N -th commutativity degree $P_{N}(G)$ as the (N,M)-th commutativity degree $P_{N}^{M}(G)$ for positive integers N and M. $P_{N}^{M}(G)$ is the probability of a random pair (x, y) of $\mathrm{G} \times \mathrm{G}$ so that $x^{N} y^{M}=y^{M} x^{N}$. Sarmin and Mohamad [7], and, Ali and Sarmin [6] obtained $P_{N}\left(D_{4}\right)$ for all N. Abdul Hamid [5] obtained $P\left(D_{n}\right)$, and, Azizi and Dostie [2] obtained $P_{N}\left(D_{n}\right)$, for all N and n . In this paper, We find $P_{N}^{M}\left(D_{n}\right)$ for all N, M and n . Erfanian and Rezaei [1] introduced the concept of the relative commutativity degree $\mathrm{P}(\mathrm{H}, \mathrm{G})$ of a subgroup H of a finite group G. $\mathrm{P}(\mathrm{H}, \mathrm{G})$ is the probability that a random element of H commutes with a random element of G. Let $G^{N}=\left\{a^{N} \mid a \in G\right\}$ for a positive integer N. Yahya et all [10] used same $P_{N}(G)$ defined by Sarmin and Mohamad [7]. They [10] expressed $P_{N}(G)$ by the equation $P_{N}(G)=\left|\left\{(x, y) \in G \times G \mid x^{N} y=y x^{N}\right\}\right| /\left(|G|^{2}\right)$. But to prove $P_{N}\left(D_{n}\right)$ they [10] did not use this equation. Their [10] proof for $P_{N}\left(D_{n}\right)$ can be obtained by using the equation $P_{N}(G)=\left|\left\{(x, y) \in G^{N} \times G \mid x y=y x\right\}\right| /\left(\left|G^{N}\right||G|\right)$ which is the relative commutativity degree $P\left(G^{N}, G\right)$. We define $P\left(G^{N}, G\right)$ as the relative N-th commutativity degree and denote it by $P_{N}(G, G)$. Yahya et all [10] obtained $P_{N}\left(D_{n}, D_{n}\right)$ for all N and for some dihedral groups D_{n} upto degree $n=12$. In this paper We extend the concept of the relative N -th commutativity degree $P_{N}(G, G)$ as the relative $(N, M)-t h$ commutativity degree $P_{N}^{M}(G, G)=P\left(G^{N}, G^{M}\right)$ for Positive integers N and $M . P_{N}^{M}(G, G)$ is the probability that a random element of G^{N} commutes with a random element of G^{M}. In this paper We find $P_{N}^{M}\left(D_{n}, D_{n}\right)$ for all N, M and n . Then $P_{N}^{M}\left(D_{n}\right)$ and $P_{N}^{M}\left(D_{n}, D_{n}\right)$ are improvements of $P_{N}\left(D_{n}\right)\left(\operatorname{or} P\left(D_{n}\right)\right)$ and $P_{N}\left(D_{n}, D_{n}\right)\left(\operatorname{or} P\left(D_{n}\right)\right)$ respectively. Finally we find all subgroups, all normal subgroups, the center and the commutator subgroup of D_{n}.

2. Preliminaries

Definition 2.1 [4,3]. Dihedral group D_{n} for $\mathrm{n} \geq 3$ is defined as the rigid motions taking a regular n -gon back to itself, with operation being composition and obtained D_{n} as following :
(i) $D_{n}=\left\{1, x, x^{2}, \ldots \ldots, x^{\mathrm{n}-1}, y, y x, y x^{2}, \ldots \ldots, y x^{\mathrm{n}-1}\right\}$,
(ii) $y^{2}=1, x^{n}=1=x^{0}, x y=y x^{-1}, x^{i} y=y x^{-i}$ and $\left|D_{n}\right|=2 n$.

Definition 2.2 [8]. The commutativity degree $\mathrm{P}(\mathrm{G})$ of a finite group G is defined by

$$
P(G)=|\{(x, y) \in G \times G \mid x y=y x\}| /\left(|G|^{2}\right)
$$

Definition 2.3 [2,6,7]. The N-th commutativity degree $P_{N}(G)$ of a finite group G is defined by
$\mathrm{P}_{\mathrm{N}}(\mathrm{G})=\left|\left\{(\boldsymbol{x}, \boldsymbol{y}) \in \boldsymbol{G} \times \boldsymbol{G} \mid \boldsymbol{x}^{\boldsymbol{N}} \boldsymbol{y}=\boldsymbol{y} \boldsymbol{x}^{\boldsymbol{N}}\right\}\right| /\left(|\boldsymbol{G}|^{2}\right)$.
Definition 2.4 [1]. The relative commutativity degree $\mathrm{P}(\mathrm{H}, \mathrm{G})$ of a subgroup H of a finite group G is defined by $P(H, G)=|\{(x, y) \in H \times G \mid x y=y x\}| /(|H||G|)$.

Definition 2.5 [10]. The N-th commutativity degree $\mathrm{P}_{\mathrm{N}}(\mathrm{G})$ in [10] can be replaced by the relative N-th commutativity degree $P_{N}(G, G)=P\left(G^{N}, G\right) \cdot P_{N}(G, G)$ is the probability that a random element of G^{N} commutes with a random element of G given by $P_{N}(G, G)=P\left(G^{N}, G\right)=\left|\left\{(x, y) \in G^{N} \times G \mid x y=y x\right\}\right| /\left(\left|G^{N}\right||G|\right)$.

Definition 2.6 [3]. A relation \sim on Z is called an equivalence relation on Z if
(i) $a \sim a \forall($ for every $) a \in Z, \quad$ (ii) $a \sim b \Rightarrow b \sim a$ and (iii) $a \sim b$ and $b \sim c \Rightarrow a \sim c$.

Theorem 2.7 [3]. An equivalence relativon \sim on a set Z decomposes Z into disjoint equivalence classes and $[a]=[b]$ if and only if $a \sim b$. Where $[x]$ denotes the equivalence class by $x \in Z$.

3. Representation Of Dihedral Group As A Group Of Residue Classes

Definition 3.1. Let Z be the set of integers and 2 n be a positive integer. Let $a, b \in Z$. We define a relation ~ on Z by
$a \sim b \Leftrightarrow 2 n$ divides $(a-b) \Leftrightarrow a-b=2 \mathrm{nq}$ for some $q \in Z$.

Then \sim is called the relation of congruent modulo 2 n and We write $a \equiv b(\bmod 2 n)$.

Lemma 3.2. The relation \sim of congruent modulo $2 n$ is an equivalence relation on Z.

Proof. Let $a, b, c \in Z$. We can write $\mathrm{a}-\mathrm{a}=2 \mathrm{n}(0)$. Then from definition 3.1, We get $a \sim a$. Let $a \sim b$. Then from definition 3.1, We get $\mathrm{a}-\mathrm{b}=2 \mathrm{nq}$ for some $q \in Z$, implies $b-a=2 n(-q)$, implies $b \sim a$. Let $a \sim b$ and $b \sim c$. Then from definition 3.1, We get $a-b=2 n q_{1}$ and $b-c=2 n q_{2}$ for some $q_{1}, q_{2} \in Z$, implies $a-b+b-$ $c=2 n q_{1}+2 n q_{2}$, implies $a-c=2 n\left(q_{1}+q_{2}\right)$, implies $a \sim c$. It follows that \sim is an equivalence relation on Z.

Definition 3.3. Let $a \in z$ and \sim be the relation of congruent modulo 2 n. Let
$[a]=\{x \in z \mid x \sim a\}$.
Then [a] is called equivalence class by a. [a] is also called residue class modulo 2 n by a. We can also denote residue class modulo 2 n by $[a]_{n}$.

Lemma 3.4. The relation \sim of congruent modulo $2 n$ On Z decomposes Z into disjoint residue classes.
Proof. The proof follows from lemma 3.2, definition 3.3 and the fact that an equivalence relation decomposes a set into disjoint equivalence classes.

Lemma 3.5. Let $a, b \in Z$. Let [a] and [b] be the residue classes modulo 2n. Then,

$[\boldsymbol{a}]=[\boldsymbol{b}] \Leftrightarrow \mathbf{2 n}$ divides $(\boldsymbol{a}-\boldsymbol{b}) \Leftrightarrow \boldsymbol{a}-\boldsymbol{b}=\mathbf{2 n q}$ for some $\boldsymbol{q} \in \mathbf{Z}$.
Proof. Let $a, b \in Z$. Since the relation \sim of congruent modulo 2 n is an equivalence relation so $[a]=[b] \Leftrightarrow$ $\mathrm{a} \sim \mathrm{b}$. Then the proof follows from definition 3.1.

Lemma 3.6. Let \sim be the relation of congruent modulo $2 n$ on Z. Then,
(i) $a \in Z \Rightarrow[a]=[r]$, for some $0 \leq r<2 n$,
(ii) $0 \leq r, s<2 n, r \neq s \Rightarrow[r] \neq[s]$,
(iii) for all $k, a \in Z,[2 k n+a]=[a]=[r] \in Z_{2 n}$, for some $0 \leq r<2 n$, and
(iv) for all $\mathrm{k},[2 \mathrm{kn}]=[2 \mathrm{n}]=[0]$.

Proof.

(i) Let $a \in Z$. Then by division algorithm, We get $a=2 n q+r$ for some $q \in Z$ and $0 \leq r<2 n$, implies $a-r=2 n q$. Then from lemma 3.5, We get $[\mathrm{a}]=[\mathrm{r}]$.
(ii) Let $0 \leq r, s<2 n, r \neq s$, implies $0 \leq|r-s|<2 n$, implies 2 n does not divide $r-s$. Then from lemma 3.5, We get $[r] \neq[s]$.
(iii) We can write $(2 k n+a)-a=2 k n$. Then from lemma 3.5, We get $[2 \mathrm{kn}+\mathrm{a}]=[\mathrm{a}]$. Then proof follows from lemma 3.6 (i).
(iv) The proof follows from lemma 3.5.

Lemma 3.7. Let $\mathrm{Z}_{2 \mathrm{n}}$ denote the set of residue classes modulo 2n. Then,
$Z_{2 n}=\{[r] \mid 0 \leq r<2 n\}=\{[2 r],[2 r+1] \mid 0 \leq r<n\}$ and $\left|Z_{2 n}\right|=2 n$.
Proof. The proof follows from lemma 3.6 (i, ii).

Definition 3.8. Let $[r],[s] \in \mathbf{Z}_{2 n}$. We define an operation '.' On $\mathbf{Z}_{2 n}$ by

(i) $\quad[r] .[s]=[r+s]$, if s is even, and
(ii) $[r] \cdot[s]=[-r+s]=[2 n-r+s]$, if s is odd.

Lemma 3.9. The binary operation '.' on $Z_{2 n}$ defined by definition 3.8 (i, ii) is well defined.

Proof. Let $a_{1}, a_{2}, b_{1}, b_{2} \in Z$. Let $\left[a_{1}\right]=\left[a_{2}\right]$ and $\left[b_{1}\right]=\left[b_{2}\right]$. Then from lemma 3.5, We get $a_{1}-a_{2}=2 n q_{1}$, and $b_{1}-b_{2}=2 n q_{2}$ for some $q_{1}, q_{2} \in Z$, implies $\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right)=2 n\left(q_{1}+q_{2}\right)$ and $\left(-a_{1}+\right.$ $\left.b_{1}\right)-\left(-a_{2}+b_{2}\right)=2 n\left(q_{2}-q_{1}\right), \mathrm{b}_{1}$ and b_{2} both are even or both are odd, implies $\left[a_{1}+b_{1}\right]=\left[a_{2}+b_{2}\right]$ and $\left[-a_{1}+b_{1}\right]=\left[-a_{2}+b_{2}\right], \mathbf{b}_{1}$ and \mathbf{b}_{2} both are even or both are odd. Then from definition 3.8 (i,ii), We get $\left[\mathrm{a}_{1}\right] .\left[\mathrm{b}_{1}\right]=\left[\mathrm{a}_{2}\right] .\left[\mathrm{b}_{2}\right]$. From lemma 3.6(iii), We get $[-r+s]=[2 n-r+s]$.

Lemma 3.10. $Z_{2 n}$ is closed under '.', that is $[r],[s] \in Z_{2 n} \Rightarrow[r] .[s] \in Z_{2 n}, \forall[r],[s] \in Z_{2 n}$.

Proof. The proof follows from lemma 3.6 (i, iii) and definition 3.8 (i, ii).
Lemma 3.11. $Z_{2 n}$ is associative under $!$!' That is $[r] .([s] .[t])=([r] .[s]) .[t], \forall[r],[s],[t] \in Z_{2 n}$.

Proof. Let s be even and t be even. Then from definition 3.8 (i), We get $[r] .([s] .[t])=[r] .([s+t])=[r+$ $s+t]=[r+s] \cdot[t]=([r] \cdot[s]) \cdot[t]$.

Let s be even and t be odd. Then from definition 3.8 (ii), We get $[r]$. ([$[s] .[t])=[r] .[-s+t]=[-r-s+$ $t]=[r+s] \cdot[t]=([r] \cdot[s]) \cdot[t]$.

Let s be odd and t be even. Then from definition 3.8 (i, ii), We get $[r] .([s] .[t])=[r] .[s+t]=[-r+s+$ $t]=[-r+s] \cdot[t]=([r] \cdot[s]) \cdot[t]$.

Let s be odd and t be odd. Then from definition 3.8 (i, ii), We get $[r] .([s] .[t])=[r] .[-s+t]=[r-s+t]=$ $[-r+s] \cdot[t]=([r] \cdot[s]) \cdot[t]$.

Lemma 3.12. [0] is identity of $Z_{2 n}$ under !.' That is $[r] .[0]=[0] .[r]=[r], \forall[r] \in Z_{2 n}$.

Proof. Let $[r] \in Z_{2 n}$. if r is even, then from definition 3.8(i), We get $[r] .[0]=[r+0]=[r]=[0+r]=$ [0]. [r]. If r is odd, then from definition 3.8 (i, ii), We get $[r] .[0]=[r+0]=[r]=[-0+r]=[0] \cdot[r]$.

Lemma 3.13. Let $[r] \in Z_{2 n}$. Then inverse of $[r]$ under \because ' is given by
(i) $\quad[r]^{-1}=[-r]=[2 n-r]$, if r is even, and
(ii) $[r]^{-1}=[r]$, if r is odd.

Proof. Let $[\mathrm{r}] \in \mathrm{Z}_{2 \mathrm{n}}$. If r is even, then from definition 3.8 (i), We get $[r] .[-r]=[r-r]=[0]=[-r+r]=$ $[-r] .[r]$, implies $[r]^{-1}=[-r]$. If r is odd, then from definition 3.8(ii), We get $[r] .[r]=[-r+r]=[0]$, implies $[r]^{-1}=[r]$. Also from lemma 3.6(iii), We get $[-r]=[2 n-r]$.

Lemma 3.14. $Z_{2 n}$ is not commutative for $n \geq 3$ under '.'

Proof. Let [1], $[2] \in Z_{2 n}$. Then from definition 3.8 (i, ii), We get [1]. [2] $=[1+2]=[3]$ and [2]. [1] $=$ $[-2+1]=[-1]=[2 n-1]$, by lemma 3.6 (iii). If $n \geq 3$, then $2 n-1 \neq 3$ and $0 \leq 2 n-1,3<2 n$. Then from lemma 3.6(ii), We get $[3] \neq[2 n-1]$. Then it follows that $[1] .[2] \neq[2] .[1]$.

Theorem 3.15. The set $Z_{2 n}$ of residue classes modulo $2 n$ forms a group of order $2 n$ under '.. Further $Z_{2 n}$ is

non-abelian for $\boldsymbol{n} \geq 3$.

Proof. The proof follows from lemma 3.7, definition 3.8 and lemma (3.9, 3.10, 3.11, 3.12, 3.13, 3.14).

Theorem 3.16. The dihedral group D_{n} of degree n has a new representation as a group of residue classes modulo 2n given by
$D_{n}=Z_{2 n}=\{[r] \mid 0 \leq r<2 n\}=\{[2 r],[2 r+1] \mid 0 \leq r<n\}$ under ''defined by definition $3.8(i, i i)$.

Proof. Let D_{n} be dihedral group of degree n defined by definition 2.1 [3,4]. We define a mapping $f: Z_{2 n} \rightarrow D_{n}$ from $Z_{2 n}$ into D_{n} by $f([2 r])=x^{r}$ and $\mathrm{f}([2 \mathrm{r}+1])=y x^{\mathrm{r}}$, where $\mathrm{r}=0,1,2 \ldots,(\mathrm{n}-1)$. Let $[l],[m] \in Z_{2 n}$.

Let $l=2 r$ and $m=2 t+1$. Then from definition 2.1 (i, ii), definition 3.8 (ii) and definition of f, We get $f([l] \cdot[m])=f([2 r] \cdot[2 t+1])=f([-2 r+2 t+1])=f([2(-r+t)+1])=y x^{-r+t}=y x^{t} x^{-r}=$ $x^{r} y x^{t}=f([2 r]) f([2 t+1])=f([l]) f([m])$.

Let $l=2 r$ and $m=2 t$. Then from definition 3.8 (i) and definition of f , We get $f([l] \cdot[m])=f([2 r] .[2 t])=$ $f([2 r+2 t])=f([2(r+t)])=x^{r+t}=x^{r} x^{t}=f([2 r]) f([2 t])=f([l]) f([m])$.

Let $l=2 r+1$ and $m=2 t$. Then from definition 3.8 (i) and definition of f , We get $f([l] .[m])=f([2 r+$ 1]. $[2 t])=f([2 r+1+2 t])=f([2(r+t)+1])=y x^{r+t}=y x^{r} x^{t}$ $=f([2 r+1]) f([2 t])=f([l]) f([m])$.

Let $l=2 r+1$ and $m=2 t+1$. Then from definition 2.1 (ii), definition 3.8 (ii) and definition of f, We get
$f([l] \cdot[m])=f([2 r+1] \cdot[2 t+1])=f([-2 r+2 t])=([2(-r+t)])=x^{-r+t}=x^{-r} x^{t}=x^{-r} \cdot 1 \cdot x^{t}=$ $x^{-r} y^{2} x^{t}=x^{-r} y y x^{t}=y x^{r} y x^{t}=f([2 r+1]) f([2 t+1])=f([l]) f([m])$.

It follows that f is a homomorphism. From definition 2.1(i,ii), lemma 3.7 and definition of f, it follows that f is one-one and onto. Hence We get $Z_{2 n} \cong D_{n}$. Then the proof follows from lemma 3.7 and theorem 3.15.

Definition 3.17. Let D_{n} be dihedral group of degree n given by theorem 3.16. Then $[r] \in D_{n}$ will be called even or odd element of D_{n} according as r is even or odd.

Lemma 3.18. Let E and O be defined by

(i) $E=\{[2 r] \mid 0 \leq r<n\}$, and
(ii) $O=\{[2 r+1] \mid 0 \leq r<n\}$.

Then E and O are sets of even and odd elements of D_{n} and
(iii) $\quad D_{n}=E \cup O, E \cap O=\varnothing=n u l l$,
(iv) $|E|=n,|O|=n$ and $\left|D_{n}\right|=2 n$.

Proof. The proof follows from theorem 3.16.

Lemma 3.19. Let D_{n} be dihedral group of degree n and $[s],[2 r],[2 r+1],[l] \in D_{n}$. Then,

(i) $K[2 r]=[K(2 r)]$, for any positive integer K ,
(ii) $L[2 r+1]=[0]$, if L is even,
(iii) $L[2 r+1]=[2 r+1]$, if L is Odd, and
(iv) $[s]=[l] \Leftrightarrow[s-l]=[0]$,
where $\mathrm{N}[\mathrm{r}]$ denote the N -th power of $[r] \in D_{n}$. That is $\mathrm{N}[\mathrm{r}]=[\mathrm{r}]^{\mathrm{N}}$.
Proof. (i) From definition 3.8 (i), We get, $1[2 r]=[2 r], 2[2 r]=[2 r] .[2 r]=[2 r+2 r]=[2(2 r)], 3[(2 r)]=$ $2[2 r] .[2 r]=[2(2 r)] .[2 r]=[2(2 r)+2 r]=[3(2 r)]$. Continuing, We get, $K[2 r]=[K(2 r)]$.
(ii) Let L be even. Then $\mathrm{L}=2 \mathrm{q}$ for some $q \in Z$. Then from definition 3.8 (ii) and lemma 3.19(i), We get,
$L[2 r+1]=2 q[2 r+1]=q([2 r+1] .[2 r+1])=q[-2 r-1+2 r+1]=q[0]=[q(0)]=[0]$.
(iii) Let L be odd. Then $\mathrm{L}=2 \mathrm{q}+1$ for some $q \in Z$.

Then from lemma 3.19(ii) and definition 3.8 (ii), We get, $\mathrm{L}[2 r+1]=(2 q+1)[2 r+1]=$ $2 q[2 r+1] \cdot[2 r+1]=[0] \cdot[2 r+1]=[-0+2 r+1]=[2 r+1]$.
(iv) Using lemma 3.5 and lemma 3.6 (iv), We get,
$[s]=[l] \Leftrightarrow s-l=2 n q \Leftrightarrow[s-l]=[2 n q]=[0]$.

4. The (N,M)-th Commutativity Degree Of Dihedral Groups

Definition 4.1. We define the (\mathbf{N}, \mathbf{M})-th commutativity degree $P_{N}^{M}(G)$ of a finite group G by
$P_{N}^{M}(G)=\left|\left\{(x, y) \in G \times G \mid x^{N} y^{M}=y^{M} x^{N}\right\}\right| /\left(|G|^{2}\right)$,
for positive integers N and M .
Definition 4.2. The (N, M)-th commutativity set $C_{N}^{M}(A \times B)$ of $\mathbf{A} \times B$ subset of $D_{n} \times D_{n}$ is defined by
$C_{N}^{M}(A \times B)=\{([r],[s]) \in A \times B \mid N[r] . M[s]=M[s] . N[r]\}$,
where We define $L[r]=[r]^{L}$ for any integer L.

Lemma 4.3. Let D_{n} be dihedral group of degree n. Then,

$P_{N}^{M}\left(D_{n}\right)=\left[\left|C_{N}^{M}(E \times E)\right|+\left|C_{N}^{M}(E \times O)\right|+\left|C_{N}^{M}(O \times E)\right|+\left|C_{N}^{M}(O \times O)\right|\right] /\left(4 n^{2}\right)$.
Proof. From definition (4.1, 4.2), for $G=D_{n}$ and $\left|D_{n}\right|=2 n$, We get,
$P_{N}^{M}\left(D_{n}\right)=\left|\left\{([r],[s]) \in D_{n} \times D_{n} \mid N[r] . M[s]=M[s] . N[r]\right\}\right| /\left(4 n^{2}\right)$, and
$C_{N}^{M}\left(D_{n} \times D_{n}\right)=\left\{([r],[s]) \in D_{n} \times D_{n} \mid N[r] . M[s]=M[s] . N[r]\right\}$.
Then, We get, $P_{N}^{M}\left(D_{n}\right)=\left|C_{N}^{M}\left(D_{n} \times D_{n}\right)\right| /\left(4 n^{2}\right)$. From lemma 3.18(iii, iv), We get $D_{n} \times D_{n}=(E \times E) \cup$ $(E \times 0) \cup(0 \times E) \cup(0 \times 0)$, where any two of $E \times E, E \times 0,0 \times E$ and 0×0 are disjoint. Then using definition 4.2, We get, $\left|C_{N}^{M}\left(D_{n} \times D_{n}\right)\right|=\left|C_{N}^{M}(E \times E)\right|+\left|C_{N}^{M}(E \times 0)\right|+\left|C_{N}^{M}(0 \times E)\right|+\left|C_{N}^{M}(0 \times 0)\right|$. Then We get lemma 4.3.

Lemma 4.4. Let D_{n} be dihedral group of degree n. Then,
(i) $\quad P_{N}^{1}\left(D_{n}\right)=P_{N}\left(D_{n}\right)$, and
(ii) $\quad P_{1}^{1}\left(D_{n}\right)=P\left(D_{n}\right)$.

Proof . The proof follows from definition $(2.2,2.3,4.1)$ for $G=D_{n}$.
Lemma 4.5. $\quad\left|C_{K}^{L}(A \times B)\right|=\left|C_{L}^{K}(B \times A)\right|$, for any L and K.
Proof. From definition 4.2, We get, $C_{K}^{L}(A \times B)=\{([r],[s]) \in A \times B \mid K[r] . L[s]=L[s] . K[r]\}$ and $C_{L}^{K}(B \times A)=\{([s],[r]) \in B \times A \mid L[s] . K[r]=K[r] . L[s]\}$. Then it follows that $([r],[s]) \in C_{K}^{L}(A \times B) \Leftrightarrow$ $([s],[r]) \in C_{L}^{K}(B \times A)$, implies $\left|C_{K}^{L}(A \times B)\right|=\left|C_{L}^{K}(B \times A)\right|$.

Lemma 4.6. Let D_{n} be dihedral group of degree n. Then,
(i) $\left|C_{K}^{L}(E \times O)\right|=\left|C_{L}^{K}(O \times E)\right|=\left|C_{K}^{1}(E \times O)\right|=\left|C_{1}^{K}(O \times E)\right|$, if L is odd and K is any integer,
(ii) $\left|C_{K}^{L}(O \times O)\right|=\left|C_{L}^{K}(O \times O)\right|=\left|C_{1}^{1}(O \times O)\right|$, if L and K both are odd,
(iii) $\left|C_{K}^{L}(E \times O)\right|=\left|C_{L}^{K}(O \times E)\right|=\left|C_{K}^{L}(O \times O)\right|=\left|C_{L}^{K}(O \times O)\right|=n^{2}$, if L is even and K is any integer, and
(iv) $\left|C_{K}^{L}(E \times E)\right|=n^{2}$, if L and K are any positive integer.

Proof.

(i) From definition 4.2, We get, $C_{K}^{L}(E \times O)=\{([r],[s]) \in E \times O \mid K[r] . L[s]=L[s] . K[r]\}$ and $C_{K}^{1}(E \times O)=\{([r],[s]) \in E \times O \mid K[r] .[s]=[s] . K[r]\}$. Let L be odd. Then from lemma 3.19 (iii), We get, $L[s]=[s]$. Then it follows that $C_{K}^{L}(E \times O)=C_{K}^{1}(E \times O)$, implies $\left|C_{K}^{L}(E \times O)\right|=\mid C_{K}^{1}(E \times$ $O) \mid$. Then using lemma 4.5 , We get lemma 4.6 (i).
(ii) From definition 4.2, We get $C_{K}^{L}(O \times O)=\{([r],[s]) \in O \times O \mid K[r] . L[s]=L[s] . K[r]\}$ and $C_{K}^{1}(O \times O)=\{([r],[s]) \in O \times O \mid[r] .[s]=[s] .[r]\}$. If L and K both are odd, then from lemma 3.19 (iii), We get $\mathrm{L}[\mathrm{s}]=[\mathrm{s}]$ and $\mathrm{K}[\mathrm{r}]=[\mathrm{r}]$. Then it follows that $C_{K}^{L}(O \times O)=C_{1}^{1}(O \times O)$, implies $\left|C_{K}^{L}(O \times O)\right|=\left|C_{1}^{1}(O \times O)\right|$. Then, using lemma 4.5, We get lemma 4.6 (ii).
(iii) From definition 4.2, We get $C_{K}^{L}(E \times O)=\{([r],[s]) \in E \times O \mid K[r] \cdot L[s]=L[s] . K[r]\}$ and $C_{K}^{L}(O \times O)=\{([r],[s]) \in O \times O \mid K[r] . L[s]=L[s] . K[r]\}$. If Lis even, then from Lemma 3.19 (ii), We get $L[s]=[0]$. Then from lemma 3.12, We get $K[r] . L[s]=L[s] . K[r], \forall[r] \in D_{n}, \forall[s] \in O$. Then it follows that,
$C_{K}^{L}(E \times O)=E \times O, C_{K}^{L}(O \times O)=0 \times 0$.
Then from lemma 3.18 (iv), We get $\left|C_{K}^{L}(E \times O)\right|=|E||O|=n . n=n^{2}$ and $\left|C_{K}^{L}(O \times O)\right|=|O||O|=$ $n . n=n^{2}$. Then from lemma 4.5, We get lemma 4.6 (iii).
(iv) From definition 4.2, We get $C_{K}^{L}(E \times E)=\{([r],[s]) \in E \times E \mid K[r] . L[s]=L[s] . K[r]\}$. Since [r] and [s] are even, so from 3.19 (i), it follows that $\mathrm{K}[\mathrm{r}]$ and $\mathrm{L}[\mathrm{s}]$ are even. From definition 3.8(i), We get $K[r] . L[s]=[K r] .[L s]=[K r+L s]=[L s+K r]=[L s] .[K r]$ $=L[s] . K[r], \forall[r],[s] \in E$. Then It follows that $\left|C_{K}^{L}(E \times E)\right|=|E \times E|=|E| .|E|=n^{2}$ using lemma 3.18 (iv).

Lemma 4.7. If K is any positive integer and $[2 t] \in D_{n}$, then $K[2 t]=[0]$ has $p=(n, K)$ number of solutions as $[2 t]=[2 v c], 0 \leq v<p, c=n / p$.

Proof. Let $\mathrm{p}=$ greatest common divisor of n and $\mathrm{K}=(\mathrm{n}, \mathrm{K})$. Then $\mathrm{n}=\mathrm{pc}, \mathrm{K}=\mathrm{pd},(\mathrm{d}, \mathrm{c})=1$. Let $[2 \mathrm{t}] \in D_{n}$ and $K[2 t]=[0]$. Let $0 \leq 2 t<2 n$. Then, from lemma 3.19(i), We get [2Kt] $=[0]$. Then from lemma 3.5, We get $K(2 t)=2 r n$, for some $\mathrm{r}, 0 \leq 2 t<2 n$, implies $t=r n / K, K \backslash r n(K$ divides $r n), 0 \leq 2 r n / K<2 n$, implies, $t=r p c / p d, p d \backslash r p c, 0 \leq 2 r p c / p d<2 p c, c=n / p, p=(n, K),(d, c)=1$, implies $t=r c / d, d \backslash r, 0 \leq$ $r / d<p, c=n / p, \quad p=(n, K)$, implies $t=v d c / d, r=v d, 0 \leq v d / d<p, c=n / p, p=(n, K)$,implies $t=$ $v c, 0 \leq v<p, c=n / p, p=(n, K)$, implies $[2 t]=[2 v c], 0 \leq v<p, c=n / p, t=v c, p=(n, K)$. Now $0 \leq$ $v<p, c=n / p$, implies $0 \leq 2 v c<2 p c, 0 \leq v<p, c=n / p$, implies $0 \leq 2 v c<2 n$ for $0 \leq v<p . \quad$ Then from lemma 3.6 (ii), it follows that $[2 t]=[2 v c]$, for $v=0,1,2 \ldots,(p-1)$, are $p=(n, K)$ different elements of D_{n}. Let t be any integer. Then by division algorithm We get $2 t=2 n q+2 l, 0 \leq 2 l<2 n$. Then from lemma 3.6(iii), We get $[2 t]=[2 n q+2 l]=[2 l], 0 \leq 2 l \leq 2 n$, implies $K[2 t]=K[2 l]$ and $K[2 t]=[0] \Leftrightarrow K[2 l]=[0], 0 \leq$ $2 l<n$. Then by previous case We get the theorem.

Lemma 4.8. Let K be any integer. Then $\left|C_{K}^{1}(E \times O)\right|=\left|C_{1}^{K}(O \times E)\right|=(n, 2 K) n$.
Proof. From definition 4.2, We get $C_{K}^{1}(E \times O)=$
$\{([2 t],[2 r+1]) \in E \times O \mid K[2 t] .[2 r+1]=[2 r+1] . K[2 t]\}$. Then from definition 3.8 (i,ii) and lemma 3.19 (i, iv), We get $C_{K}^{1}(E \times O)=\{([2 t],[2 r+1]) \in E \times O \mid 2 K[2 t]=[0]\}$. Then from lemma 3.18(iv) and lemma
4.7, We get $C_{K}^{1}(E \times O)=\{([2 v c],[2 r+1]) \mid 0 \leq v<p, 0 \leq r<n, p=(n, 2 K), c=n / p\}$, implies $\left|C_{K}^{1}(E \times O)\right|=p n=(n, 2 K) n$. From lemma 4.5, We get $\left|C_{1}^{K}(O \times E)\right|=\left|C_{K}^{1}(E \times O)\right|=(n, 2 K) n$.

Lemma 4.9. $\left|C_{1}^{1}(0 \times 0)\right|=(n, 2) n$.
Proof. From definition 4.2, We get $C_{1}^{1}(0 \times 0)=$ $\{([2 t+1],[2 r+1]) \in O \times O \mid[2 t+1] \cdot[2 r+1]=[2 r+1] .[2 t+1]\}$. Then from definition 3.8 (ii) and lemma 3.19 (iv), We get $C_{1}^{1}(O \times O)=\{([2 t+1],[2 r+1]) \in O \times O \mid 2[2(t-r)]=[0]\}$. Then from lemma 3.18 (iv), lemma 3.19(iv) and lemma 4.7, We get $C_{1}^{1}(O \times O)=\{([2 t+1],[2 r+1]) \mid[2 t-2 r]=[2 v c], 0 \leq$ $v<p, 0 \leq r<n, c=n / p, p=(n, 2)\}$
$\{([2 v c+2 r+1],[2 r+1]) \mid 0 \leq v<p, 0 \leq r<n, c=n / p, p=(n, 2)\}$,
implies $\left|C_{1}^{1}(0 \times O)\right|=\mathrm{pn}=(\mathrm{n}, 2) \mathrm{n}$.
Theorem 4.10. If N and M both are odd positive integers, then,
$P_{N}^{M}\left(D_{n}\right)=[n+(n, 2 N)+(n, 2 M)+(n, 2)] /[4 n]$.

Proof. Let N and M both be odd. Then from lemma 4.6 (i, ii, iv), lemma 4.8 and lemma 4.9, We get
$\left|C_{N}^{M}(E \times O)\right|=\left|C_{N}^{1}(E \times O)\right|=(n, 2 N) n,\left|C_{N}^{M}(O \times E)\right|=\left|C_{1}^{M}(O \times E)\right|=(n, 2 M) n,\left|C_{N}^{M}(O \times O)\right|=$ $\left|C_{1}^{1}(O \times O)\right|=(n, 2) n$ and $\left|C_{N}^{M}(E \times E)\right|=n^{2}$. Then from lemma 4.3, We get $P_{N}^{M}\left(D_{n}\right)=\left[n^{2}+\right.$ $(n, 2 N) n+(n, 2 M) n+(n, 2) n] /\left[4 n^{2}\right]=[n+(n, 2 N)+(n, 2 M)+(n, 2)] /[4 n]$.

Theorem 4.11. If \mathbf{N} is even and M is odd, then,

$P_{N}^{M}\left(D_{n}\right)=[3 n+(n, 2 N)] /[4 n]$.
Proof. Let N be even and M be odd. Then from lemma 4.6 (i,ii,iii) and lemma 4.8, We get,
$\left|C_{N}^{M}(E \times O)\right|=\left|C_{N}^{1}(E \times O)\right|=(n, 2 N) n,\left|C_{N}^{M}(O \times E)\right|=n^{2},\left|C_{N}^{M}(O \times O)\right|=n^{2}$
and $\left|C_{N}^{M}(E \times E)\right|=n^{2}$. Then from lemma 4.3, We get $P_{N}^{M}\left(D_{n}\right)=\left[n^{2}+(n, 2 N) n+n^{2}+n^{2}\right] /\left[4 n^{2}\right]=$ $[3 n+(n, 2 N)] /(4 n)$.

Theorem 4.12. If \mathbf{N} is odd and M is even, then,
$P_{N}^{M}\left(D_{n}\right)=[3 n+(n, 2 M)] /[4 n]$.
Proof. Let N be odd and M be even. Then from lemma 4.6 (i, iii, iv) and lemma 4.8, We get
$\left|C_{N}^{M}(E \times O)\right|=n^{2},\left|C_{N}^{M}(O \times E)\right|=\left|C_{1}^{M}(O \times E)\right|=(n, 2 M) n,\left|C_{N}^{M}(O \times O)\right|=n^{2}$ and
$\left|C_{N}^{M}(E \times E)\right|=n^{2}$. Then from lemma 4.3, We get
$P_{N}^{M}\left(D_{n}\right)=\left[n^{2}+n^{2}+(n, 2 M) n+n^{2}\right] /\left[4 n^{2}\right]=[3 n+(n, 2 M)] /[4 n]$.
Theorem 4.13. If \mathbf{N} and \mathbf{M} both are even, then, $P_{N}^{M}\left(D_{n}\right)=1$.
Proof. Let N and M both be even. Then from lemma 4.6 (iii, iv), We get $\left|C_{N}^{M}(E \times O)\right|=n^{2}$, $\left|C_{N}^{M}(O \times E)\right|=n^{2},\left|C_{N}^{M}(O \times O)\right|=n^{2}$ and $\left|C_{N}^{M}(E \times E)\right|=n^{2}$. Then from lemma 4.3 We get $P_{N}^{M}\left(D_{n}\right)=$ $\left[n^{2}+n^{2}+n^{2}+n^{2}\right] /\left[4 n^{2}\right]=1$.

Theorem 4.14. The \mathbf{N}-th commutativity degree of dihedral group of degree \mathbf{n} is given by
(i) $\quad P_{N}^{1}\left(D_{n}\right)=P_{N}\left(D_{n}\right)=[n+(n, 2 N)+2(n, 2)] /[4 n]$, if N is odd and
(ii) $\quad P_{N}^{1}\left(D_{n}\right)=P_{N}\left(D_{n}\right)=[3 n+(n, 2 N)] /[4 n]$, if N is even.

Proof. The proof follows from lemma 4.4(i), theorem 4.10 and theorem 4.11, for $\mathrm{M}=1$.

Theorem 4.15. Let D_{n} be dihedral group of degree n. Then,

$P_{1}^{1}\left(D_{n}\right)=P\left(D_{n}\right)=[n+3(n, 2)] /[4 n]$.
Proof. The proof follows from lemma 4.4(ii) and theorem 4.14 (i) for $\mathrm{N}=1$.

Theorem 4.16[2]. Let D_{n} be dihedral group of degree n, where $n \geq 3, d=g . c . d .(n, N)$ and $r=n / d$. Then,
(i) $\quad P_{N}\left(D_{n}\right)=1 / 4+1 /(2 n)+1 /(4 r), \mathrm{n}$ is odd, N is odd,
(ii) $\quad P_{N}\left(D_{n}\right)=1 / 4+2[1 /(2 n)+1 /(4 r)], \mathrm{n}$ is even, N is odd,
(iii) $P_{N}\left(D_{n}\right)=3 / 4+1 /(2 r), r$ is even, N is even,
(iv) $\quad P_{N}\left(D_{n}\right)=3 / 4+1 /(4 r), r$ is odd, N is even.

Proof. Let $\mathrm{d}=$ g.c.d. (n, N) and $r=n / d=n /(n, N)$. Then $(n, N)=n / r$. Le N be odd. If n is odd, then $(\mathrm{n}$, $2)=1$ and $(n, 2 N)=(n, N)=n / r$. If n is even, then $(n, 2)=2$ and $(n, 2 N)=2(n, N)=2 n / r$. Let N be even. If $r=n / d=n /(n, N)$ is even, then $(n, 2 N)=2(n, N)=2 n / r$. If r is odd, then, $(n, 2 N)=(n, N)=$ n / r. Then proof follows from theorem 4.14 by putting the values of $(n, 2)$ and $(n, 2 N)$.

Theorem 4.17 [1]. Let D_{n} be dihedral group of degree n. Then, (i) $P\left(D_{n}\right)=(n+3) /(4 n)$, if n is odd and
(ii) $P\left(D_{n}\right)=(n+6) /(4 n)$, if n is even.

Proof. Let n be odd, then $(n, 2)=1$. Let n be even, then $(n, 2)=2$. Then the proof follows from theorem 4.15 by putting the values of $(\mathrm{n}, 2)$.

Theorem 4.18 [6,7]. Let D_{4} be dihedral group of degree 4. Then,
(i) $\quad \mathrm{P}_{\mathrm{N}}\left(\mathrm{D}_{4}\right)=5 / 8$, if N is odd and
(ii) $\quad \mathrm{P}_{\mathrm{N}}\left(\mathrm{D}_{4}\right)=1$, if N is even.

Proof. Let $\mathrm{n}=4$. Then $(\mathrm{n}, 2)=(4,2)=2$. If N is odd, then $(\mathrm{n}, 2 \mathrm{~N})=(4,2 \mathrm{~N})=2$. If N is even, then $(\mathrm{n}, 2 \mathrm{~N})=$ $(4,2 N)=4$. Then from theorem 4.14 (i, ii), We get $\mathrm{P}_{\mathrm{N}}\left(\mathrm{D}_{4}\right)=5 / 8$, if N is odd and $\mathrm{P}_{\mathrm{N}}\left(\mathrm{D}_{4}\right)=1$, if N is even.

5. The Relative (N,M)-th Commutativity Degree Of Dihedral Groups

Definition 5.1. The relative (N, M)-th commutativity degree

$P_{N}^{M}(G, G)$ of a finite group G is defined by
$\mathrm{P}_{\mathrm{N}}^{\mathrm{M}}(\mathrm{G}, \mathrm{G})=\mathrm{P}\left(\mathrm{G}^{\mathrm{N}}, \mathrm{G}^{\mathrm{M}}\right)=\left|\left\{(x, y) \in G^{N} \times G^{M} \mid x y=y x\right\}\right| /\left(\left|G^{N}\right|\left|G^{M}\right|\right)$, for positive integers N and M . Then $\mathrm{P}_{\mathrm{N}}^{\mathrm{M}}(\mathrm{G}, \mathrm{G})$ is the probability that a random element of G^{N} commutes with a random element of G^{M}.

Definition. 5.2. The commutativity set $\mathbf{C}(A \times B)$ of $(A \times B)$ subset of $D_{n} \times D_{n}$ is defined by
$\boldsymbol{C}(\boldsymbol{A} \times \boldsymbol{B})=\{([r],[s]) \in \boldsymbol{A} \times \boldsymbol{B} \mid[r] .[s]=[s] .[r]\}$.
Lemma 5.3. The relative (N, M)-th commutativity degree of dihedral group D_{n} is given by
$\mathrm{P}_{\mathrm{N}}^{\mathrm{M}}\left(\mathrm{D}_{\mathrm{n}}, \mathrm{D}_{\mathrm{n}}\right)=\left|C\left(N \mathrm{D}_{\mathrm{n}} \times \mathrm{MD}_{\mathrm{n}}\right)\right| /\left(\left|N \mathrm{D}_{\mathrm{n}}\right|\left|M \mathrm{D}_{\mathrm{n}}\right|\right)$,
where We define $K A=A^{K}$, the set of distinct elements of K-th power of elements of A, for any subset A of D_{n}.
Proof. From definition 5.1, for $\mathbf{G}=D_{n}$, We get $P_{N}^{M}\left(D_{n}\right)=\left|\left\{([r],[s]) \in N D_{n} \times M D_{n} \mid[r] .[s]=[s] .[r]\right\}\right| /$ $\left(\left|\mathrm{ND}_{\mathrm{n}}\right|\left|\mathrm{MD}_{\mathrm{n}}\right|\right)$.

From definition 5.2, for $\mathrm{A}=\mathrm{ND}_{\mathrm{n}}$ and $\mathrm{B}=\mathrm{MD}_{\mathrm{n}}$, We get $C\left(\mathrm{ND}_{\mathrm{n}} \times \mathrm{MD}_{\mathrm{n}}\right)=\left\{([\mathrm{r}],[\mathrm{s}]) \in \mathrm{ND}_{\mathrm{n}} \times \mathrm{MD}_{\mathrm{n}} \mid[\mathrm{r}] .[\mathrm{s}]=\right.$ [s]. [r]\}. Then We get lemma 5.3.

Lemma 5.4. If D_{n} is dihedral group of degree n. Then,

(i) $P_{N}^{1}\left(D_{n}, D_{n}\right)=P_{N}\left(D_{n}, D_{n}\right)$, and
(ii) $\quad P_{1}^{1}\left(D_{n}, D_{n}\right)=P_{1}^{1}\left(D_{n}\right)=P\left(D_{n}\right)$.

Proof. The proof follows from definition $(2.2,2.5,4.1,5.1)$ for $G=D_{n}$.
Lemma 5.5. Let \boldsymbol{E} and O be the sets of even and odd elements of D_{n} respectively. If K is any positive integer and $K E=\{K[2 t] \mid[2 t] \in E\}$, Then,
(i) $\quad|K E|=n /(n, K)$, and
(ii) $\quad|C(K E \times O)|=|C(O \times K E)|=[(n, 2 K) n] /(n, K)$.

Proof. Let $[2 \mathrm{r}],[2 \mathrm{t}] \in E$. We define a relation \sim on E by $[2 \mathrm{r}] \sim[2 t] \Leftrightarrow K[2 r]=K[2 t]$. Then it is easy to see that \sim is an equivalence relation on E and decomposes E into disjoint equivalence classes. Let [$\overline{2 r}]$ be the class containing [2r]. Then $[\overline{2 r}]=\{[2 t] \in E \mid K[2 t]=K[2 r]\}$. Then from lemma 3.19 (i, iv), We get $[\overline{2 r}]=$ $\{[2 t] \in E \mid K[2(t-r)]=[0]\}$. Then from lemma 4.7, We get $|[\overline{2 r}]|=(n, K)$. Let there be l distinct classes. Then, $l(n, K)=|E|$. Then from lemma 3.18 (iv), We get $l(n, K)=n$, implies $l=n /(n, K)$. If $[2 t],[2 s] \in$ $[\overline{2 r}]$, then $K[2 t]=K[2 s]$ and so one element of KE will be obtained from all the elements of one class. Then it follows that $|K E|=l=n /(n, K)$, Which is lemma 5.5(i).

Let $P=\{[2 t] \in E \mid K[2 t] .[2 r+1]=[2 r+1] . K[2 t]$, for some $[2 r+1] \in O\}$. Then using definition 3.8 (i, ii) and lemma 3.19 (i, ii), We get $P=\{[2 t] \in E \mid 2 K[2 t]=[0]\}$. Then from lemma 4.7, We get $P=$ $\{[2 v c] \mid 0 \leq v<p, p=(n, 2 K), c=n / p\}$ and $|P|=(n, 2 K)$, implies P is independent of [2r $\mathrm{r}+1]$, implies, $K[2 t] \cdot[2 r+1]=[2 r+1] \cdot K[2 t], \forall[2 t] \in P, \forall[2 r+1] \in O$. Then it follows that every element of KE obtained from P will commute with all n odd elements of O . Let $[2 t] \in P$ and $[2 s] \in[\overline{2 t}]$. Then, $K[2 t] \cdot[2 r+1]=[2 r+1] . K[2 t], \forall[2 r+1] \in O$, and $K[2 s]=K[2 t], \quad$ implies, $K[2 s] .[2 r+1]=[2 r+$ 1]. $K[2 s], \forall[2 r+1] \in O$,
implies $[2 s] \in P$. Then it follows that P is union of some q equivalence classes. Then it follows that $q \cdot(n, K)=$ $|P|=(n, 2 K)$, implies, $q=(n, 2 K) /(n, K)$. Also it follows that q elements of KE will be obtained from elements of P and these q elements of KE will commute with all n odd elements of O . Then from definition of P and definition 5.2, We get,
$|C(K E \times O)|=|\{([r],[s]) \in K E \times O \mid \quad[r] .[s]=[s] .[r]\}|=q n=\{(n, 2 K) /(n, K)\} . n=$
$\{(n, 2 K) n\} /(n, K)$. From definition 5.2, We get $C(K E \times O)=\{([r],[s]) \in K E \times O \mid[r] .[s]=[s] .[r]\}$ and $C(O \times K E)=\{([s],[r]) \in O \times K E \mid[s] .[r]=[r] .[s]\}$.

Then, $([r],[s]) \in(K E \times O) \Leftrightarrow[r] .[s]=[s] .[r] \Leftrightarrow[s] .[r]=[r] .[s] \Leftrightarrow([s],[r]) \in C(O \times K E)$.
Then it follows that $|C(O \times K E)|=|C(K E \times O)|=\{(n, 2 K) n\} /(n, K)$, which is lemma 5.5 (ii).

Lemma 5.6. Let E and O be the sets of even and odd elements of D_{n} respectively. Then,

(i) $|C(K E \times L E)|=\left(n^{2}\right) /\{(n, K)(n, L)\}$, for any positive integers K and L , and
(ii) $|C(0 \times 0)|=(n, 2) n$.

Proof .
(i) From definition 5.2, We get $C(K E \times L E)=\{([r],[s]) \in K E \times L E \mid[r] .[s]=[s] \cdot[r]\}$.

From lemma 3.19 (i) it follows that elements of KE and LE are always even for any K and L . From definition 3.8(i), it follows that any two even elements will always commute. Then it follows that $|C(K E \times L E)|=|K E||L E|$.

Then from lemma 5.5(i), We get, $|C(K E \times L E)|=\{n /(n, K)\} .\{n /(n, L)\}=\left(n^{2}\right) /\{(n, K)(n, L)\}$.
(ii) From definition (4.2, 5.2), We get
$C_{1}^{1}(O \times O)=C(O \times O)=\{([r],[s]) \in O \times O \mid[r] .[s]=[s] .[r]\}$. Then, using lemma 4.9 We get, $|C(O \times O)|=\left|C_{1}^{1}(O \times O)\right|=(n, 2) n$.

Lemma 5.7. Let E and O be the sets of even and odd elements of D_{n} respectively.

Let $K E=\{K[2 t] \mid[2 t] \in E\}$ and $L O=\{L[2 r+1] \mid[2 r+1] \in O\}$. Then,
(i) $[0] \in K E$, for any integer K ,
(ii) $\mathrm{LO}=\mathrm{O}$, if L is odd integer,
(iii) $\mathrm{LO}=\{[0]\}$, if L is even integer,
(iv) $K E \cap O=\varnothing=$ null, for any integer K , and
(v) $|K E \cup O|=\{n /(n, K)\}+n$, for any integer K.

Proof.

(i) From lemma 3.18(i), We get $[0] \in$ E.Then using lemma 3.19(i), We get $K[0]=K[2(0)]=$ $[K(2(0))]=[0] \in K E$.
(ii) Let L be odd and $[2 r+1] \in O$. Then from lemma 3.19(iii), We get $L[2 r+1]=[2 r+1]$. Then $L O=\{L[2 r+1] \mid[2 r+1] \in O\}=\{[2 r+1] \mid[2 r+1] \in O\}=0$
(iii) Let L be even and $[2 r+1] \in O$. Then from lemma 3.19(ii), We get $L[2 r+1]=[0]$. Then $L O=\{L[2 r+1] \mid[2 r+1] \in O\}=\{[0] \mid[2 r+1] \in O\}=\{[0]\}$.
(iv) From lemma 3.19(i), it follows that elements of $K E=\{K[2 t] \mid[2 t] \in E\}=\{[2 K t] \mid[2 t] \in E\}$ are even. But elements of O are odd. Therefore $K E \cap O=\emptyset=$ null.
(v) From (iv), We get $K E \cap O=\varnothing$ so We get $|K E \cup O|=|K E|+|O|$. Then from 3.18(iv) and lemma 5.5(i), We get $|K E \cup O|=\{n /(n, K)\}+n$.

Theorem 5.8. Let N and M both be odd. Then,

$$
P_{N}^{M}\left(D_{n}, D_{n}\right)=[n+(n, 2 N)(n, M)+(n, 2 M)(n, N)+(n, 2)(n, N)(n, M)] /[n\{1+(n, N)\}\{1+(n, M)\}] .
$$

Proof . Let N and M both be odd. Then using lemma 3.18(iii) and lemma 5.7(ii), We get
$N D_{n}=N E \cup N O=N E \cup O$ and $M D_{n}=M E \cup M O=M E \cup O$. Then using lemma $5.7(\mathrm{v})$, We get $\left|N D_{n}\right|=$ $\{n /(n, N)\}+n$ and $\left|M D_{n}\right|=\{n /(n, M)\}+n$. From lemma 5.7(iv), it follows that any two of $N E \times M E, N E \times$ $O, O \times M E$ and $O \times O$ are disjoint. Then using definition 5.2, We get $\left|C\left(N D_{n} \times M D_{n}\right)\right|=\mid C\{(N E \cup O) \times$ $(M E \cup O)\}|=|C(N E \times M E)|+|C(N E \times O)|+|C(O \times M E)|+|C(O \times O)|$. Then using lemma 5.5 (ii) and lemma $5.6(\mathrm{i}, \quad$ ii $) \quad$ We get $\left|C\left(N D_{n} \times M D_{n}\right)\right|=\left(n^{2}\right) /\{(\mathrm{n}, \mathrm{N})(\mathrm{n}, \mathrm{M})\}+\{(\mathrm{n}, 2 \mathrm{~N}) \mathrm{n}\} /$ $(\mathrm{n}, \mathrm{N})+\{(n, 2 M) n\} /(n, M)+(n, 2) n$. Then using lemma 5.3 We get $P_{N}^{M}\left(D_{n}, D_{n}\right)=\left|C\left(N D_{n} \times M D_{n}\right)\right| /$ $\left(\left|N D_{n}\right|\left|M D_{n}\right|\right)$
$=\left[\left(n^{2}\right) /\{(n, N)(n, M)\}+\{(n, 2 N) n\} /(n, N)+\{(n, 2 M) n\} /(n, M)+(n, 2) n\right] /[\{n /(n, N)+n\}\{(n /(n, M)+n\}]$
$=[n+(n, 2 N)(n, M)+(n, 2 M)(n, N)+(n, 2)(n, N)(n, M)] /[n\{1+(n, N)\}\{1+(n, M)\}]$.

Theroem 5.9. Let N be even and M be odd. Then,

$P_{N}^{M}\left(D_{n}, D_{n}\right)=[n+(n, 2 N)(n, M)] /[n\{1+(n, M)\}]$.
Proof. Let N be even and M be odd. Then using lemma 3.18(iii) and lemma 5.7(i, ii, iii), We get

$$
N D_{n}=N E \cup N O=N E \cup\{[0]\}=N E \text { and } M D_{n}=M E \cup M O=M E \cup O .
$$

Then using lemma 5.5(i) and lemma 5.7(v), We get $\left|N D_{n}\right|=|N E|=n /(n, N)$ and $\left|M D_{n}\right|=|M E \cup O|=$ $n /(n, M)+n$. From lemma 5.7(iv), it follows that $\mathrm{NE} \times \mathrm{ME}$ and $\mathrm{NE} \times \mathrm{O}$ are disjoint. Then using definition 5.2, We get $\left|C\left(N D_{n} \times M D_{n}\right)\right|=|C\{N E \times(M E \cup O)\}|$
$=|C\{(N E \times M E) \cup(N E \times O)\}|=|C(N E \times M E)|+|C(N E \times O)|$.
Then using lemma 5.5(ii) and lemma 5.6(i), We get
$\left|C\left(N D_{n} \times M D_{n}\right)\right|=\left(n^{2}\right) /\{(n, N)(n, M)\}+\{(n, 2 N) n\} /(n, N)$.
Then using lemma 5.3, We get $P_{N}^{M}\left(D_{n}, D_{n}\right)=\left|\mathrm{C}\left(\mathrm{ND}_{\mathrm{n}} \times \mathrm{MD}_{\mathrm{n}}\right)\right| /\left(\mid\left(\mathrm{ND}_{\mathrm{n}}| | \mathrm{MD}_{\mathrm{n}} \mid\right)=\right.$
$\left[\left(n^{2}\right) /\{(n, N)(n, M)\}+\{(n, 2 N) n\} /(n, N)\right] /[\{n /(n, N)\}\{n /(n, M)+n\}]=$ $[n+(n, 2 N)(n, M)] /[n\{1+(n, M)\}]$.

Theorem 5.10. Let N be odd and M be even. Then,

$P_{N}^{M}\left(D_{n}, D_{n}\right)=[\mathrm{n}+(\mathrm{n}, 2 \mathrm{M})(\mathrm{n}, \mathrm{N})] /[\mathrm{n}\{1+(\mathrm{n}, \mathrm{N})\}]$.
Proof. Let N be odd and M be even. Then from lemma 3.18(iii) and lemma 5.7 (i, ii, iii), We get $N D_{n}=$ $\mathrm{NE} \cup \mathrm{NO}=\mathrm{NE} \cup \mathrm{O}$ and $M D_{n}=\mathrm{ME} \cup \mathrm{MO}=\mathrm{ME} \cup\{[0]\}=\mathrm{ME}$. Then from lemma 5.5(i) and lemma 5.7(v) We get $\left|N D_{n}\right|=|N E \cup O|=\{\mathrm{n} /(\mathrm{n}, \mathrm{N})\}+\mathrm{n}$ and $\left|M D_{n}\right|=|M E|=\mathrm{n} /(\mathrm{n}, \mathrm{M})$. From lemma 5.7(iv), it follows that $N E \times M E$ and $\mathrm{O} \times M E$ are disjoint. Then using definition 5.2, We get $\left|C\left(N D_{n} \times M D_{n}\right)\right|=\mid C\{(N E \cup O) \times$ $M E\}|=|C\{(N E \times M E) \cup(O \times M E)\}|$
$=|C(N E \times M E)|+|C(O \times M E)|$. Then using lemma 5.5 (ii) and lemma 5.6(i), , We get $\left|C\left(N D_{n} \times M D_{n}\right)\right|=$ $\left(n^{2}\right) /\{(n, N)(n, M)\}+\{(n, 2 M) n\} /(n, M)$.

Then using lemma 5.3, We get $P_{N}^{M}\left(D_{n}, D_{n}\right)=\left|C\left(N D_{n} \times M D_{n}\right)\right| /\left(\left|N D_{n}\right|\left|M D_{n}\right|\right)=$
$\left.\left[\left(n^{2}\right) /\{(n, N)(n, M)\}+\{(n, 2 M) n\} /(n, M)\right] /[\{n /(n, N)+n)\}\{n /(n, M)\}\right]$
$=[n+(n, 2 M)(n, N)] /[n\{1+(n, N)\}]$.
Theorem 5.11. Let N and M both be even. Then, $P_{N}^{M}\left(D_{n}, D_{n}\right)=1$.
Proof. Let N and M both be even. Then from lemma 3.18(iii) and lemma 5.7(i, iii), We get $\mathrm{ND}_{\mathrm{n}}=N E \cup N O=$ $N E \cup\{[0]\}=N E$ and $\left.\operatorname{MD}_{\mathrm{n}}=M E \cup M O=M E \cup\{[0]\}=\operatorname{MEU} \cup[0]\right\}=$ ME. Then using lemma 5.6(i), We get $\left|C\left(N D_{n} \times M D_{n}\right)\right|=|C(N E \times M E)|=\left(n^{2}\right) /\{(n, N)(n, M)\}$.

Using lemma 5.5(i), We get $\left|\left(N D_{n}\right)\right|=|N E|=n /(n, N)$ and $\left|\left(M D_{n}\right)\right|=|(M E)|=n /(n, M)$. Then using lemma 5.3, We get $P_{N}^{M}\left(D_{n}, D_{n}\right)=\left|C\left(N D_{n} \times M D_{n}\right)\right| /\left(|N D|\left|M D_{n}\right|\right)=\left[\left(n^{2}\right) /\{(n, N)(n, M)\}\right] \quad /[\{n /$ $(n, N)\}\{n /(n, M)\}]=1$.

Theorem 5.12. The relative N-th commutativity degree of dihedral group of degree n is given by
(i) $\quad P_{N}^{1}\left(D_{n}, D_{n}\right)=P_{N}\left(D_{n}, D_{n}\right)=[n+(n, 2 N)+2(n, 2)(n, N)] /[2 n\{1+(n, N)\}]$, if N is odd, and
(ii) $\quad P_{N}^{1}\left(D_{n}, D_{n}\right)=P_{N}\left(D_{n}, D_{n}\right)=[n+(n, 2 N)] /[2 n]$, if N is even.

Proof. If $M=1$, then $(n, M)=1$ and $(n, 2 M)=(n, 2)$. Then proof follows from Theorem (5.8, 5.9).
Theorem 5.13 [10]. Let D_{3} be dihedral group of degree 3, then for $K, N \in Z^{+}$, where $K=0,1,2 \ldots$, the relative N-th commutativity degree of $D_{3}, P_{N}\left(D_{3}, D_{3}\right)$ is given as follows,
(i) $\quad P_{N}\left(D_{3}, D_{3}\right)=1 / 2 ; N=1+2 K$,
(ii) $\quad P_{N}\left(D_{3}, D_{3}\right)=2 / 3 ; N=2+6 K, N=4+6 K$,
(iii) $P_{N}\left(D_{3}, D_{3}\right)=1 ; N=6+6 K$.

Proof. Let $\mathrm{n}=3$. If $N=1+2 K$, then $(3,2 N)=(3, N)$ and $(3,2)=1$. Then from theorem $5.12(\mathrm{i})$, we get $P_{N}\left(D_{3}, D_{3}\right)=[3+(3,2 N)+2(3,2)(3, N)] /[2(3)\{1+(3, N)\}]=[3+(3, N)+2(3, N)] /[2(3)\{1+$ $(3, N)\}]=[3\{1+(3, N)\}] /[2(3)\{1+(3, N)\}]=1 / 2$. If $N=2+6 K, 4+6 k$, then, $(n, 2 N)=(3,2 N)=$ 1. Then from theorem 5.12 (ii), We get $P_{N}\left(D_{3}, D_{3}\right)=[3+1] /[2(3)]=2 / 3$. If $N=6+6 K$, then $(n, 2 N)=$ $(3,2 N)=3$. Then, from theorem 5.12 (ii), We get $P_{N}\left(D_{3}, D_{3}\right)=[3+3] /[2(3)]=1$.

Remark. In [10], $P_{N}\left(D_{3}, D_{3}\right)$ has been denoted by $P_{N}\left(D_{3}\right)$. We can obtain all the theorems of [10] from theorem 5.12 (i,ii).

Theorem 5.14. Let D_{4} be dihedral group of degree 4. Then,
(i) $\quad P_{N}\left(D_{4}, D_{4}\right)=P_{N}\left(D_{4}\right)=5 / 8$, If N is odd and
(ii) $\quad P_{N}\left(D_{4}, D_{4}\right)=P_{N}\left(D_{4}\right)=1$ if N is even.

Proof. Let $\mathrm{n}=4$. If N is odd, then $(\mathrm{n}, 2 \mathrm{~N})=2,(\mathrm{n}, \mathrm{N})=1$ and $(\mathrm{n}, 2)=2$. Then from theorem 5.12(i) and theorem 4.14(i), We get $P_{N}\left(D_{4}, D_{4}\right)=P_{N}\left(D_{4}\right)=10 / 16=5 / 8$. If N is even, then $(\mathrm{n}, 2 \mathrm{~N})=4$. Then from theorem 5.12 (ii) and theorem 4.14(ii), We get $P_{N}\left(D_{4}, D_{4}\right)=P_{N}\left(D_{4}\right)=8 / 8=1$.

6. The Subgroups Of Dihedral Group

Definition 6.1. Let d be a positive integer such that $d \backslash n$ and $k=n / d$ or $k d=n$. Let O be the set of odd elements of D_{n} and $[2 t+1],[2 i+1] \in 0$. We define a relation \sim on O by $[2 t+1] \sim[2 i+1] \Leftrightarrow 2 d$ divides $(2 t+1-2 i-1) \Leftrightarrow 2 t+1=2 r d+2 i+1$, for some $r \in Z$.

Theorem 6.2. The relation \sim defined by definition 6.1 is an equivalence relation on O. If $C_{d}[2 i+1]$ is the equivalence class by $[2 i+1] \in O$, then,
(i) $C_{d}[2 i+1]=\{[2 r d+2 i+1] \mid r \in Z\}=\{[2 r d+2 i+1] \mid 0 \leq r<k\}$,
(ii) $\left|C_{d}[2 i+1]\right|=k$, and
(iii) there are d distinct classes for $0 \leq i<d$.

Proof. It is obvious that \sim is an equivalence relation on O.Then \sim decomposes O into disjoint equivalence classes.
(i) Let $C_{d}[2 i+1]$ be the equivalence class by $[2 i+1] \in 0$. Then $C_{d}[2 i+1]=\{[2 t+1] \in 0 \mid[2 t+$ $1] \sim[2 i+1]\}$. Let $[2 t+1] \in C_{d}[2 i+1]$, implies $[2 t+1] \sim[2 i+1]$. Then from definition 6.1, We get $2 t+$ $1=2 r d+2 i+1$, for some $r \in Z$, implies $[2 t+1]=[2 r d+2 i+1]$, for some $r \in Z$. Let $r \in Z$. Then $2 d$ divides $(2 r d+2 i+1-2 i-1)$. Then from definition 6.1, We get $[2 r d+2 i+1] \sim[2 i+1]$, implies $[2 r d+$ $2 i+1] \in C_{d}[2 i+1]$. Then it follows that $C_{d}[2 i+1]=$
$\{[2 r d+2 i+1] \mid r \in Z\}$. Let $0 \leq r_{1}, r_{2}<k, r_{1} \neq r_{2}$, implies, $0 \leq 2 r_{1} d, 2 r_{2} d<2 k d, 2 r_{1} d \neq 2 r_{2} d$. Since $k d=$ n, it follows that $0 \leq 2 r_{1} d, 2 r_{2} d<2 n, 2 r_{1} d \neq 2 r_{2} d$. Then from lemma 3.6(ii), We get [2r $\left.d\right] \neq\left[2 r_{2} d\right]$. Then from lemma 3.19 (iv), We get $\left[2 r_{1} d+2 i+1\right] \neq\left[2 r_{2} d+2 i+1\right]$. Let $r \in Z$. Then by division algorithm We can write $r=q k+r_{1}, 0 \leq r_{1}<k$, implies $2 r d+2 i+1=2 q k d+2 r_{1} d+2 i+1=2 n q+2 r_{1} d+2 i+1$. Then from lemma 3.6 (iii), We get, $[2 r d+2 i+1]=\left[2 n q+2 r_{1} d+2 i+1\right]=\left[2 r_{1} d+2 i+1\right], 0 \leq r_{1}<k$. Then it follows that $C_{d}[2 i+1]=\{[2 r d+2 i+1] \mid r \in Z\}=\{[2 r d+2 i+1] \mid 0 \leq r<k\}$ and $\left|C_{d}[2 i+1]\right|=$ k.
(ii) It follows from proof of(i).
(iii) Let there be l distinct classes. From (ii) it follows that each class has k elements. Then, We get $l k=|0|$. Then from lemma 3.18 (iv), We get $l k=n$, implies $l=n / k=d$. Let $[2 t+1] \in 0$. By division algorithm We can write $t=q d+i, 0 \leq i<d$, implies $2 t+1=2 q d+2 i+1,0 \leq i<d$. Then from definition 6.1, We get $[2 t+1] \sim[2 i+1], 0 \leq i<d$, implies $C_{d}[2 t+1]=C_{d}[2 i+1], 0 \leq i<d$. Then (iii) follows.

Theorem 6.3. The set of even elements of a subgroup H of D_{n} is a subgroup of H.
Proof. Let H be a subgroup of D_{n}. Let T be the set of even elements of H. Then $[0] \in H$, implies [0] $\in T$. Let $[2 r],[2 t] \in T$. implies $[2 r],[2 t] \in H$ implies, $[2 r] .[2 t] \in H$. From definition 3.8(i), We get $[2 r] .[2 t]=$
$[2 r+2 t]=[2(r+t)]$ which is even element. Then it follows that $[2 r] .[2 t] \in T$. Hence T is closed and finite. Therefore T is a subgroup of H.

Theorem 6.4. Let $[2 r+1],[2 r] \in D_{n}$. Then,
(i) $\quad O([2 r+1])=$ order of $[2 r+1]=2$, and
(ii) $\quad O([2 r])=n /(n, r), \quad r \geq 1$.

Proof. (i) From definition 3.8(ii), We get, $1[2 r+1]=[2 r+1], 2[2 r+1]=[2 r+1] \cdot[2 r+1]=[-2 r-$ $1+2 r+1]=[0]$, implies $O([2 r+1])=2$.
(ii) Let $O([2 r])=m$. Then m is the least positive integer such that $m[2 r]=[0]$, implies $[2 m r]=[0]$ by lemma 3.19(i). Then from definition 3.1, We get $2 m r=2 n q$ for some $q \in Z$, implies $m=(n q) / r$ where q is the least positive integer such that r divides $n q$. Let $p=(n, r)$. Then We can write $n=p l$ and $r=p a$ where l and a are relatively prime. Then $m=(l q) / a$ where q is the least positive integer such that a divides $l q$. Then it follows that $q=a$. Then $m=l=n / p=n /(n, r)$.

Theorem 6.5. Let $[2 c] \in D_{n}, 1 \leq c$ and $H=\{r[2 c] \mid r \in Z\}$. Let $k=n /(n, c)$ or $k(n, c)=n$. Then H is cyclic subgroup of order k and index $2(n, c)$ given by $H=\{r[2(n, c)]=[2 r(n, c)] \mid r \in Z\}=$ $\{r[2(n, c)]=[2 r(n, c)] \mid 0 \leq r<k\}$, where $2(n, c)$ is the least positive even integer such that $[2(n, c)] \in H$. Proof. Let $[2 c] \in D_{n}, 1 \leq \mathrm{c}$ and $H=\{r[2 c] \mid r \in Z\}$. Then it is obvious that H is a cyclic subgroup generated by $[2 c]$. From theorem 6.4(ii), We get $\mathrm{O}([2 c])=n /(n, c)$. Let $k=n /(n, c)$ or $k(n, c)=n$. Then from theorem 6.4 (ii), We get $\mathrm{O}([2(n, c)]=n /(n,(n, c))=n /(n, c)$. Let $\mathrm{c}=(n, c) a$. Then a and k are relatively prime. Then by Euclid division algorithm, there exists integers x and y such that $a x+k y=1$, implies, $a x=1-k y$. Let $r=k+x$. Then from lemma 3.19(i), We get $r[2 c]=[2 r c]=[2(k+x) c]=$ $[2(k+x)(n, c) a]=[2 k(n, c) a+2 x(n, c) a]=[2 n a+2(n, c)(1-k y)]=[2 n a+2(n, c)-$ $2(n, c) k y]=[2 n a+2(n, c)-2 n y]=[2 n(a-y)+2(n, c)]=[2(n, c)]$, by lemma 3.6(iii). Then it follows that $\quad[2(n, c)] \in H . \quad$ Since $\quad O([2 c])=O([2(n, c)])=k, \quad$ We \quad get \quad that $\quad H=\{r[2(n, c)] \mid r \in Z\}=$ $\{r[2(n, c)] \mid 0 \leq r<k\},|H|=\mathrm{k}$, index $H=2 n / k=2(n, c)$. Since $k(n, c)=n$, it follows that $2(n, c)$ is the least positive even integer such that $[2(n, c)] \in H$. From lemma 3.19(i), We get $r[2(n, c)]=[2 r(n, c)]$.

Theorem 6.6. Let H be a subgroup of D_{n}. Let H contain even elements only and $2 d$ be the least positive even integer such that $[\mathbf{2 d}] \in \boldsymbol{H}$. Then $\boldsymbol{d} \backslash \boldsymbol{n}$. Let $k=n / d$ or $k d=n$. Then H is a cyclic subgroup of index $2 d$ and order k given by
$H=\{r[2 d]=[2 r d] \mid r \in Z\}=\{r[2 d]=[2 r d] \mid 0 \leq r<k\}$.

Proof. Let $[2 t] \in H$. Then by division algorithm We can write $t=r d+i, 0 \leq i<d$, implies, $2 t-2 r d=$ $2 i, \quad 0 \leq i<d$. Now [2t], [2d] $\in H$, implies [2t], $r[2 d] \in H$, implies [2t], [2rd] $\in H$, by lemma 3.19(i). Then $[2 t] \cdot[2 r d]^{-1} \in H$. Then from lemma $3.13(\mathrm{i})$ and definition 3.8 (i), We get $[2 t] \cdot[2 r d]^{-1}=$ $[2 t] .[-2 r d]=[2 t-2 r d] \in H$, implies $[2 i] \in H$. Since $2 d$ is the least positive even integer such that $[2 d] \in$ H and $[2 i] \in H$ such that $0 \leq 2 i<2 d$, it follows that $2 i=0$. Then $[2 t]=[2 r d]=r[2 d]$. Since H is subgroup, so $r[2 d] \in H \forall r \in Z$. Therefore, $H=\{r[2 d] \mid r \in Z\}$. Let $k=n /(n, d)$ or $k(n, d)=n$. Then from theorem 6.5 it follows that H is a cyclic subgroup of index $2(\mathrm{n}, \mathrm{d})$ and order k given by $H=\{r[2(n, d)]=$ $[2 r(n, d)] \mid r \in Z\}=\{r[2(n, d)]=[2 r(n, d)] \mid 0 \leq r<k\}$. where $2(n, d)$ is the least positive even integer such that $[2(n, d)] \in H$.

Therefore $2(n, d)=2 d$, implies $(n, d)=d$, Then it follows that $k d=n$ and $d \backslash n$.
Note. If $H=\{[0]\}$, then $2 n$ is the least positive even integer such that $[2 n] \in H$.
Theorem 6.7. Let H be a subgroup of D_{n} and let H contain both even and odd dements.
Let 2 d be the least positive even integer such that $[2 \mathrm{~d}] \in \mathrm{H}$. Then $\mathrm{d} \backslash \mathrm{n}$. Let $\mathrm{k}=\mathrm{n} / \mathrm{d}$ or $\mathrm{kd}=\mathrm{n}$. Then H is a dihedral subgroup of index d and order 2 k given by $H=\{r[2 d]\} \mid r \in Z\} \cup C_{d}[2 l+1]=\{[2 r d],[2 r d+2 l+$ 1] $\mid r \in Z\}=\{[2 r d],[2 r d+2 l+1] \mid 0 \leq r<k\}$.

Where $[2 l+1]$ is any odd element of H. In particular there exists $[2 i+1] \in H$ such that $0 \leq i<d$ and $H=$ $\{[2 r d],[2 r d+2 i+1] \mid 0 \leq i<k\}$.

Proof. Let H be a subgroup of D_{n} and let H contain both even and odd elements. Let T be the set of even elements of H. Then from theorem 6.3 it follows that T is a subgroup of H. Then T is also a subgroup of D_{n}. Let $2 d$ be the least positive even integer such that $[2 d] \in T$. Then from theorem 6.6 it follows that $d \backslash n$. Let $k=n / d$ or $k d=n$. Then from theorem 6.6 it follows that T is a cyclic subgroup of index $2 d$ and order k and $T=\{r[2 d] \mid r \in Z\}=\{[2 r d] \mid 0 \leq r<k\}$.

Let $[2 l+1]$ be any odd element of H. Then from theorem 6.2, We get $C_{d}[2 l+1]=$ $\{[2 r d+2 l+1] \mid r \in Z\}=\{[2 r d+2 l+1] \mid 0 \leq r<k\}$ and $\left|C_{d}[2 l+1]\right|=k$. Let $[2 t+1] \in H$. Then $[2 l+$ 1]. $[2 t+1] \in H$. Then from definition $3.8($ ii), We get $[-2 l+2 t] \in H$, implies $[2 t-2 l] \in T$, implies $[2 t-$ $2 l]=[2 r d]$ for some $r \in Z$. Then from lemma 3.19(iv), We get $[2 t+1]=[2 r d+2 l+1]$, implies $[2 t+1] \in C_{d}[2 l+1]$. Now $[2 d],[2 l+1] \in H$, implies $[2 l+1] . r[2 d] \in H \forall r \in Z$. Then from lemma 3.19(i) and definition 3.8(i), We get $[2 r d+2 l+1] \in H \forall r \in Z$. Then it follows that $H=T \cup C_{d}[2 l+1]=$
$\{[2 r d] \mid r \in Z\} \cup C_{d}[2 l+1]=\{[2 r d], \quad[2 r d+2 l+1] \mid r \in Z\}=\{[2 r d],[2 r d+2 l+1] \mid 0 \leq r<k\} \quad$ and $|H|=k+k=2 k$. By division algorithm, We can write $l=r d+i, 0 \leq i<d$, implies $2 l+1=2 r d+2 i+$ 1. Then from definition 6.1 , We get $[2 l+1] \sim[2 i+1]$, implies $C_{d}[2 l+1]=C_{d}[2 i+1]$. Then it follows that $H=\{[2 r d],[2 r d+2 i+1] \mid 0 \leq r<k\},[2 i+1] \in H, 0 \leq i<d$. Let D_{k} be dihedral group of degree k. Let $[\mathrm{s}] \in D_{k}$. Then $[s]$ will be denoted by $[s]_{k}$. Therefore, $D_{k}=\left\{[2 r]_{k},[2 r+1]_{k} \mid 0 \leq r<k\right\}$. We define a mapping $f: D_{k} \rightarrow H$ by $\mathrm{f}\left([2 r]_{k}\right)=[2 r d]$ and $f\left([2 r+1]_{k}\right)=[2 r d+2 i+1]$. Then using definition 3.8 (i, ii) and definition of f We get the following:

$$
\begin{align*}
& f\left([2 r]_{k} \cdot[2 t]_{k}\right)=f\left([2 r+2 t]_{k}\right)=[(2 r+2 t) d] \tag{i}\\
& =[2 r d+2 t d]=[2 r d] \cdot[2 t d]=f\left([2 r]_{k}\right) f\left([2 t]_{k}\right),
\end{align*}
$$

(ii) $f\left([2 r]_{k} \cdot[2 t+1]_{k}\right)=f\left([-2 r+2 t+1]_{k}\right)=f\left([2(-r+t)+1]_{k}\right)$

$$
\begin{aligned}
& =[2(-r+t) d+2 i+1]=[-2 r d+2 t d+2 i+1]=[2 r d] \cdot[2 t d+2 i+1] \\
& =f\left([2 r]_{k}\right) f\left([2 t+1]_{k}\right),
\end{aligned}
$$

(iii) $\quad f\left([2 r+1]_{k} \cdot[2 t]_{k}\right)=f\left([2 r+1+2 t]_{k}\right)=f\left([2(r+t)+1]_{k}\right)=[2(r+t) d+2 i+1]=[2 r d+$ $2 t d+2 i+1]=[2 r d+2 i+1] .[2 t d]=f\left([2 r+1]_{k}\right) f\left([2 t]_{k}\right)$,
(iv) $f\left([2 r+1]_{k} \cdot[2 t+1]_{k}\right)=f\left([-2 r+2 t]_{k}\right)=f\left([2(-r+t)]_{k}\right)$ $=[2(-r+t) d]=[-2 r d-2 i-1+2 t d+2 i+1]$
$=[2 r d+2 i+1] .[2 t d+2 i+1]=f\left([2 r+1]_{k}\right) f\left([2 t+1]_{k}\right)$.
Then it follows that f is homomorphism. Also it is obvious that f is one-one and onto. Then it follows that $D_{k} \cong H$ and hence H is a dihedral subgroup.

Theorem 6.8. Every subgroup of D_{n} is cyclic or dihedral. A complete listing of all subgroups of D_{n} is as follows:
(i) For each d such that $d \backslash n$ and $k=n / d$ or $k d=n$ there exists exactly one cyclic subgroup of index $2 d$ and order k given by
$C_{k}^{n}=\{r[2 d] \mid r \in Z\}=\{[2 r d] \mid 0 \leq r<k\}$,
where $2 d$ is the least positive even integer such that $[2 d] \in C_{k}^{n}$.
(ii) For each d such that $d \backslash n$ and $k=n / d$ there are exactly d dihedral subgroups of index d and order $2 k$ given by
$D_{k}^{n}=\{r[2 d] \mid r \in Z\} \cup C_{d}[2 i+1]$

$$
\begin{aligned}
& =\{[2 r d],[2 r d+2 i+1] \mid r \in Z\} \\
& =\{[2 r d],[2 r d+2 i+1] \mid 0 \leq r<k\},
\end{aligned}
$$

where $2 d$ is the least positive even integer such that $[2 d] \in D_{k}^{n}$ and $[2 i+1]$ is any odd element of O or D_{n}. But only d subgroups will be obtained for $0 \leq i<d$.

Proof. Let H be a subgroup of D_{n}. Since [0] $\in H$ and [0] is even element, so there are only two cases. Either H contains only even elements or H contains even and odd elements both. Then from theorem 6.6 and theorem 6.7 it follows that H is either cyclic or dihedral and H will be obtained from (i) and (ii) for some d such that $d \backslash n$.So all subgroups of D_{n} will be obtained from (i) and (ii) for different values of d such that $d \backslash n$.
(i) Let $d \backslash n$ and $k=n / d$ or $k d=n$. Let $C_{k}^{n}=\{r[2 d] \mid r \in Z\}$. Since $d \backslash n$, implies $(n, d)=d$ and $n /(n, d)=n / d=k$. Then from theorem 6.5, We get (i).
(ii) Let $d \backslash n$ and $k=n / d$ or $k d=n$. Let $T=\{r[2 d] \mid r \in Z\}$. Then form(i) it follows that $\mathrm{T}=\{r[2 d]=[2 r d] \mid 0 \leq r<k\},|T|=k$ and $2 d$ is the least positive even integer such that $[2 d] \in T$.

Let $[2 i+1] \in 0$. Then from theorem 6.2, We get $C_{d}[2 i+1]=\{[2 r d+2 i+1] \mid r \in Z\}=$
$\{[2 r d+2 i+1] \mid 0 \leq r<k\}$ and
$\left|C_{d}[2 i+1]\right|=k . \quad$ Let $\quad D_{k}^{n}=T \cup C_{d}[2 i+1]=\{[2 r d],[2 r d+2 i+1] \mid 0 \leq r<k\}=$ $\{[2 r d],[2 r d+2 i+1] \mid r \in Z\}$. Then $\left|D_{k}^{n}\right|=|T|+\left|C_{d}[2 i+1]\right|=k+k=2 k$.

Let $[2 r d],[2 t d] \in D_{k}^{n}$. Then from definition 3.8 (i). We get $[2 r d] .[2 t d]=[2 r d+2 t d]=[2(r+$ $t) d] \in D_{k}^{n}$. Let $[2 r d],[2 t d+2 i+1] \in D_{k}^{n}$. Then form definition 3.8 (i, ii), We get $[2 r d] .[2 t d+$ $2 i+1]=[2(t-r) d+2 i+1] \in D_{k}^{n}$ and $[2 t d+2 i+1] .[2 r d]=[2(t+r) d+2 i+1] \in D_{k}^{n}$. Let $[2 r d+2 i+1],[2 t d+2 i+1] \in D_{k}^{n}$. Then from definition 3.8 (ii), We get $[2 r d+2 i+1] .[2 t d+$ $2 i+1]=[2(t-r) d] \in D_{k}^{n}$. It follows that D_{k}^{n} is closed and finite subset of D_{n}. So D_{k}^{n} is a subgroup of index d and order $2 k$. From theorem 6.7 it follows that D_{k}^{n} is dihedral. From theorem 6.2, it follows that there are d distinct classes $C_{d}[2 i+1]$ for $0 \leq i<d$. So, We get d distinct dihedral subgroups.

Theorem 6.9. A complete listing of all normal subgroups of D_{n} is as follows:

(i) For each d such that $d \backslash n$ and $k=n / d$ or $k d=n$ there exists exactly one cyclic normal subgroup of index $2 d$ and order k given by
$C_{k}^{n}=\{r[2 d] \mid r \in Z\}=\{[2 r d] \mid 0 \leq r<k\}$, where $2 d$ is the least positive even integer such that $[2 d] \in$ C_{k}^{n}.
(ii) If n is odd there exists exactly one dihedral normal subgroup namely D_{n} itself.
(iii) If n is even there exists exactly three dihedral normal subgroups given by
(a) $D_{n}=\{[2 r],[2 r+1] \mid 0 \leq r<n\}$, of order $2 n$,
(b) $D_{n / 2}^{n}=\{[4 r],[4 r+1] \mid r \in Z\}=\{[4 r],[4 r+1] \mid 0 \leq r<n / 2\}$, of order n, and
(c) $D_{n / 2}^{n}=\{[4 r],[4 r+3] \mid r \in Z\}=\{[4 r],[4 r+3] \mid 0 \leq r<n / 2\}$, of order n.

Proof. All subgroups of D_{n} are given by theorem 6.8(i,ii). Let $d \backslash n$ and $k=n / d$ or $k d=n$. Then from theorem 6.8(i), We get $C_{k}^{n}=\{r[2 d] \mid r \in Z\}=\{[2 r d] \mid 0 \leq r<k\}$. Let $[2 r d] \in C_{k}^{n}$ and $[2 t] \in D_{n}$. Then using definition 3.8(i) and lemma 3.13(i), We get [2t]. [2rd]. [2t] $]^{-1}=[2 t+2 r d-2 t]=[2 r d] \in C_{k}^{n}$. Let $[2 t+1] \in D_{n}$ and $[2 r d] \in C_{k}^{n}$. Then using definition 3.8 (ii) and lemma 3.13 (ii), We get $[2 t+1] \cdot[2 r d] .[2 t+1]^{-1}=[-2 t-1-2 r d+2 t+1]=[-2 r d]=[2(-r) d] \in C_{k}^{n}$. Then it follows that C_{k}^{n} is normal subgroup of D_{n} and We get(i). From theorem 6.8(ii), We get $D_{k}^{n}=$ $\{[2 r d],[2 r d+2 i+1] \mid r \in Z\}=\quad\{[2 r d],[2 r d+2 i+1] \mid 0 \leq r<k\}=\{[2 r d] \mid r \in Z\} \cup C_{d}[2 i+$ $1], 0 \leq i<d$ and $\left|D_{k}^{n}\right|=2 \mathrm{k}$. Let $[2 t],[2 t+1] \in D_{n}$ and $[2 r d],[2 r d+2 i+1] \in D_{k}^{n}$. Then using definition 3.8(i,ii) and lemma 3.13(i,ii), We get [2t]. [2rd]. [2t $]^{-1}=[2 t+2 r d-2 t]=[2 r d] \in D_{k}^{n}$, $[2 t+1] \cdot[2 r d] \cdot[2 t+1]^{-1}=[-2 t-1-2 r d+2 t+1]=[2(-r) d] \in D_{k}^{n}, \quad[2 t] \cdot[2 r d+2 i+$ 1]. $[2 t]^{-1}=[-2 t+2 r d+2 i+1-2 t]=[-4 t+2 r d+2 i+1]$ and $[2 t+1] \cdot[2 r d+2 i+1] \cdot[2 t+$ $1]^{-1}=[4 t-2 i+1-2 r d] . D_{k}^{n}$ will be normal subgroup if and only if $[-4 t+2 r d+2 i+1]$, $[4 t-$ $2 i+1-2 r d] \in C_{d}[2 i+1]$ for every $0 \leq t<n$ for every $\mathrm{r} \in Z$.Then from theorem 6.1, We get that D_{k}^{n} is normal subgroup if and only if $2 d \backslash(-4 t+2 r d+2 i+1-2 i-1)$ and $2 d \backslash(4 t-2 i+1-2 r d-$ $2 i-1)$ for every $0 \leq t<n$ and for every $r \in Z$, if and only if $2 d \backslash 4(-t)$ and $2 d \backslash 4(t-i)$ for every $0 \leq t<n$, if and only if $d \backslash 2$. If n is odd, then $d \backslash n$ and $d \backslash 2$, implies $d=1$. Then $0 \leq i<$ d, implies $0 \leq i<1$, implies $\mathrm{i}=0$. Then $k=n / d=n / 1=n \quad$ and $\quad D_{k}^{n}=D_{n}^{n}=$ $\{[2 r],[2 r+1] \mid 0 \leq r<n\}=D_{n}$ and We get(ii). If n is even, then $d \backslash n$ and $d \backslash 2$, implies $d=1,2$. For $d=1$, We get $D_{k}^{n}=D_{n}^{n}=\{[2 r],[2 r+1] \mid 0 \leq r<n\}=D_{n}$ which is (iii)(a). If $d=2$, Then $k=n / 2$ and $0 \leq i<d$, implies $0 \leq i<2$, implies $i=0,1$. For $i=0$,

We get $D_{k}^{n}=D_{n / 2}^{n}=\{[4 r],[4 r+1] \mid 0 \leq r<n / 2\}$
which is (iii)(b). For $i=1$, We get $D_{k}^{n}=D_{n / 2}^{n}=\{[4 r],[4 r+3] \mid 0 \leq r<n / 2\}$ which is (iii)(c).
Theorem 6.10. Let $Z\left(D_{n}\right)$ denote the center of $D_{n}(n \geq 3)$. Then,
(i) $\mathrm{Z}\left(D_{n}\right)=\{[0]\}$, if n is odd, and
(ii) $\mathrm{Z}\left(D_{n}\right)=\{[0],[n]\}$, if n is even.

Proof. Let $[2 t+1] \in D_{n}$. Let $[2 t+1] .[2]=[2] .[2 t+1]$.
Then using definition 3.8 (i, ii), lemma 3.19(iv) and definition 3.1, We get $[2 t+3]=[2 t-1]$, implies, [4] $=$ [0], implies $2 n \backslash 4$, implies, $n=1,2$. So it follows that $[2 t+1] \notin Z\left(D_{n}\right)$ if $n \geq 3$. Let $[2 t],[2 r] \in D_{n}$. Then from definition 3.8(i), We get $[2 t] .[2 r]=[2 t+2 r]=[2 r] .[2 t]$. Let $[2 r+1] \in D_{n}$ and $[2 t] .[2 r+1]=$ $[2 r+1] .[2 t]$. Then using definition 3.8(i,ii) and lemma 3.19(i,iv), We get $[2 r+1-2 t]=[2 t+2 r+1]$, implies $[4 t]=[0]$, implies $2[2 t]=[0]$. Then using lemma 4.7, We get $[2 t]=[2 v c], 0 \leq v<p, p=(n, 2)$ and $c=n / p$. If n is odd, then $p=(n, 2)=1$. Then [2t] $=[0]$. Then We get (i). If n is even, then $p=$ $(n, 2)=2$. Then $[2 t]=[2 v c], 0 \leq v<2, c=n / 2$, implies $[2 t]=[0],[n]$. Then We get (ii).

Theorem 6.11. The commutator subgroup of D_{n} is given by $D_{n}^{\prime}=\{r[2(n, 2)] \mid r \in Z\}=$ $\{[2 r(n, 2)] \mid 0 \leq r<n /(n, 2)\}$.

Proof. Let $[2 t],[2 t+1],[2 r],[2 r+1] \in D_{n}$. Then using definition 3.8(i,ii) and lemma 3.13(i,ii), We get $[2 t] \cdot[2 r] \cdot[2 t]^{-1} \cdot[2 r]^{-1}=[0],[2 t] \cdot[2 r+1] \cdot[2 t]^{-1} \cdot[2 r+1]^{-1}$
$=[0],[2 r+1] \cdot[2 t] \cdot[2 r+1]^{-1} \cdot[2 t]^{-1}=[-4 t]$ and $[2 t+1] \cdot[2 r+1] \cdot[2 t+1]^{-1} \cdot[2 r+1]^{-1}=[4(r-$ $t)]$. Since [2t], $[2 r] \in D_{n}, \forall t, r \in Z$. So, if H is the set of all commutators of D_{n}, then $H=$ $\{[0],[-4 t],[4(r-t)] \mid r, t \in Z\}$. Then it follows that $H=\{r[4] \mid r \in Z\}=\{r[2(2)] \mid r \in Z\}$. Then from theorem 6.5, it follows that H is a cyclic subgroup of index $2(n, 2)$ and order $n /(n, 2)$ given by $H=\{r[2(n, 2)] \mid r \in Z\}=\{[2 r(n, 2)] \mid 0 \leq r<n /(n, 2)\}$.

Since the commutator subgroup D_{n} is the subgroup generated by the commutators. Therefore $D_{n}^{\prime}=H$.
Theorem 6.12. Let \boldsymbol{k} be a positive integer and $\boldsymbol{H}=\left\{[\mathbf{2 t}] \in D_{n} \mid \boldsymbol{k}[\mathbf{2 t}]=[\mathbf{0}]\right\}$. Then H is a cyclic subgroup of order (n, k) and index $(2 n) /(n, k)$ given by
$H=\{r[2 c] \mid r \in Z, c=n /(n, k)\}=\{[2 r c] \mid 0 \leq r<(n, k), c=n /(n, k)\}$.
Proof. Let $H=\left\{[2 t] \in D_{n} \mid k[2 t]=[0]\right\}$. Then using lemma 4.7, We get
$H=\{[2 r c]=r[2 c] \mid 0 \leq r<(n, k), c=n /(n, k)\}$. Since $c(n, k)=n$, So from theorem 6.8 (i), it follows that H is a cyclic subgroup of index $2 c=(2 n) /(n, k)$ and order (n, k).

Theorem 6.13. Let \boldsymbol{k} be a positive integer . Let kE

$=\{k[2 t] \mid[2 t] \in E\}$ and $E_{k}=\{[2 t] \in E \mid k[2 t] .[2 r+1]=[2 r+1] . k[2 t], \forall[2 r+1] \in 0\}$. Then,
(i) kE is a cyclic subgroup of E given by
$k E=\{r[2(n, k)] \mid r \in Z\}=\{[2 r(n, k)] \mid 0 \leq r<n /(n, k)\}$,
$|k E|=n /(n, k)$,
(ii) $\quad E_{k}$ is a cyclic subgroup of E given by
$E_{k}=\{r[2 c] \mid 0 \leq r<(n, 2 k), c=n /(n, 2 k)\}$,
$\left|E_{k}\right|=(n, 2 k)$,
(iii) $k E_{k}$ is a cyclic subgroup of $k E$ given by
$k E_{k}=\{r[2 k c] \mid 0 \leq r<(n, 2 k) /(n, k), \quad c=n(n, k) /(n, 2 k)\}$,
$\left|k E_{k}\right|=(n, 2 k) /(n, k)$,
(iv) $\quad\left|C_{k}^{1}(E \times O)\right|=\left|C_{1}^{k}(O \times E)\right|=\left|E_{k} \times O\right|=\left|E_{k}\right||O|=(n, 2 k) n$, and
(v) $\quad|C(k E \times O)|=|C(O \times k E)|=\left|\left(k E_{k} \times O\right)\right|=\left|k E_{k}\right||O|=(n, 2 k) n /(n, k)$.

Proof. Let \mathbf{E} be the set of even elements of D_{n}.

Then from lemma 3.18(i) and lemma 3.19 (i), We get $E=\{[2 r] \mid 0 \leq r<n\}=\{r[2] \mid r \in Z\}$ and $|E|=n$.
From theorem 6.5, it follows that E is a cyclic subgroup of D_{n}. Let k be a positive integer and
$k E=\{k[2 t] \mid[2 t] \in E\}$. Then using theorem 3.19 (i), We get $k E=\{t[2 k] \mid[2 t] \in E$ or $t \in Z\}$ and $k E \subseteq E$.
Then from theorem 6.5 , it follows that $k E$ is a cyclic subgroup and
$k E=\{t[2(n, k)] \mid t \in Z\}=\{[2 t(n, k)] \mid 0 \leq t<n /(n, k)\}, \quad|k E|=n /(n, k)$ which is (i).
Let $E_{k}=\{[2 t] \in E \mid k[2 t] .[2 r+1]=[2 r+1] \cdot k[2 t] \forall[2 r+1] \in O\}$. Then using definition 3.8(i,ii) and lemma 3.19 (i, iv), We get $E_{k}=\{[2 t] \in E \mid 2 k[2 t]=[0]\}$. Then using theorem 6.12, it follows that E_{k} is a cyclic subgroup of E and $E_{k}=\{r[2 c] \mid 0 \leq r<(n, 2 k), c=n /(n, 2 k)\},\left|E_{k}\right|=(n, 2 k)$ which is (ii). Then using lemma 3.19(i), We get
$k E_{k}=\{k[2 r c] \mid 0 \leq r<(n, 2 k), c=n /(n, 2 k)\}=\{r[2 k c] \mid 0 \leq r<(n, 2 k)$ or $r \in Z, c=n /(n, 2 k)\}$.
Then clearly $k E_{k} \subseteq k E$. Now $(n, k c)=(n, k n /(n, 2 k))=(n(n, 2 k) /(n, 2 k), k n /(n, 2 k))$
$=\{n /(n, 2 k)\}((n, 2 k), k)=\{n /(n, 2 k)\}(n, k)=n(n, k) /(n, 2 k)$, implies, $n /(n, k c)=(n, 2 k) /(n, k)$.
Then from theorem 6.5, it follows that $k E_{k}$ is a cyclic subgroup of $k E$ and $k E_{k}=\{r[2 n(n, k) /(n, 2 k)] \mid 0 \leq$ $r<(n, 2 k) /(n, k)\}$,
$\left|k E_{k}\right|=(n, 2 k) /(n, k)$ which is (iii). Using definition 4.2, lemma 4.5, (ii), $|0|=n$ and definition of E_{k}, We get (iv). Using definition 5.2, (iii), definition of $k E$, definition of $k E_{k}$ and $|0|=n$, We get (v).

Conclusion

Dihedral group D_{n} of degree n has a new representation as a group of residue classes. This new representation will help us to study any property of dihedral groups. The (N, M)-th commutativity degree $P_{N}^{M}\left(D_{n}\right)$ and the relative (N, M)-th commutativity degree $P_{N}^{M}\left(D_{n}, D_{n}\right)$ for all N, M and n have been obtained. Also all subgroups, all normal subgroups, the center and commutator subgroup have been obtained.

Acknowledgement

Dr. Subhash Chandra Singh
K.S. Inter College, District : Ballia,

State : Uttar Pradesh,
Country : India, PIN: 277001
Gmail:drsubhash4321@gmail.com

References

[1] A. Erfanian, R. Rezaei and P. Lescot, On the relative commutativity degree of subgroup of a finite group, Communications in Algebra ® 35(2007), 4183-4197.
[2] B.Azizi and H.Dostie, Certain numerical results in non-associative structures, Mathematical sciences (2019) 13:27-32.
https/doi.org/10.1007/540096-018-0274-0.
[3] D.S.Dummit and R.M. Foote, Abstract Algebra, John Wiley, N.Y. 2003.
[4] K.Conrad, Dihedral groups, course Hero, Access 27 January 2020. Available online at : https://www.coursehero.com/file/87268627/dihedral 2pdf/.
[5] M.Abdul Hamid, The probability that two elements commute in dihedral groups, "Under graduate Project Report, Universiti Teknology Malaysia(2010)."
[6] M.M. Ali and N.H. Sarmin, On some problems in group theory of probabilistic nature, Menemui Matematic (Discovering Mathematics) 32(2), 35-41(2010), ISS N 2231-7023.
[7] N.H. Sarmin and M.S. Mohammad, "The probability that two elements commute in some 2-generator 2-group of nilpotency class 2," Technical Report of Department of Mathematics, Universiti Teknology Malaysia LT/M Bil. 3/2006.
[8] P. Erodos and P.Turan, On some problem of statistical group theory, Acta Math. Acad. Sci. Hungaricae 19, 413-435 (1968).
[9] W.H. Gustofson, what is the probability that two group elements commute? Amer, Math. Montholy 80, 1031-1304 (1973).
[10] Z. Yahya, N.M.M. Ali, N.H. Sarmin and F.N.A.Manaf, The $\mathrm{n}^{\text {th }}$ commutativity degree of some dihedral groups, Menemui Matematic (Discovering Mathematics) 34, 7-14(2012). DOI : 10.1063/1.4801214.

[^0]: Mathematics Subject classification (2010). 20F17, 20B35, 20B05,20K27.
 Key words and Phrases. Dihedral group. Residue Classes, N-th commutativity degree, relative commutativity degree, Equivalence relation.

