JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND **INNOVATIVE RESEARCH (JETIR)**

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

SOME PROPERTIES OF DIHEDRAL GROUP **REPRESENTING AS A GROUP OF RESIDUE CLASSES**

SUBHASH CHANDRA SINGH

Kunwar Singh Inter College, Civil line, District: Ballia, State : Uttar Pradesh, Country : India, Pin: 277001 Gmail: drsubhash4321@gmail.com

Abstract

The aim of this paper is to introduce a new representation of dihedral group D_n of degree n as a group of residue classes and study its properties. We find the (N,M)-th Commutativity degree $P_N^M(D_n)$ for all positive integers N, M and n. $P_N^M(D_n)$ is the probability of a random pair (x,y) of $D_n \times D_n$ so that $x^N y^M = y^M x^N$. Let $D_n^K = \{a^K | a \in D_n\}$ for a positive integer K. Further We find the relative (N,M)-th commutativity degree $P_N^M(D_n, D_n) = P(D_n^N, D_n^M)$ for all positive integers N, M and n. $P_N^M(D_n, D_n)$ is the probability that a random element of D_n^N commutes with a random element of D_n^M . Finally We find all subgroups, all normal subgroups, the center and the commutator subgroup of D_n .

1. Introduction

Conrad [4] defined dihedral group D_n as a result of reflection and rotation operations. All the properties of D_n are proven by geometry approach. In this paper, We represent D_n as a group of residue classes. Then it becomes very easy to study any property of D_n. Erodos and Turan [8], and, Gustofson [9] introduced the concept of the commutativity degree P(G). P(G) is the probability that a random element of G commutes with a random element of G. Sarmin and Mohamad [7] extended the concept of the commutativity degree P(G) as the N-th

Mathematics Subject classification (2010). 20F17, 20B35, 20B05, 20K27.

Key words and Phrases. Dihedral group. Residue Classes, N-th commutativity degree, relative commutativity degree, Equivalence relation.

commutativity degree $P_N(G)$ for a positive integer N. $P_N(G)$ is the probability of a random pair (x, y) of G×G so that $x^N y = yx^N$. Ali and Sarmin [6], and, Azizi and Dostie [2] defined the same $P_N(G)$. In this paper, We extend the concept of the N-th commutativity degree $P_N(G)$ as the (N,M)-th commutativity degree $P_N^M(G)$ for positive integers N and M. $P_N^M(G)$ is the probability of a random pair (x, y) of G×G so that $x^N y^M = y^M x^N$. Sarmin and Mohamad [7], and, Ali and Sarmin [6] obtained $P_N(D_4)$ for all N. Abdul Hamid [5] obtained P(D_n), and, Azizi and Dostie [2] obtained $P_N(D_n)$, for all N and n. In this paper, We find $P_N^M(D_n)$ for all N, M and n. Erfanian and Rezaei [1] introduced the concept of the relative commutativity degree P(H, G) of a subgroup H of a finite group G. P(H,G) is the probability that a random element of H commutes with a random element of G. Let $G^N = \{a^N | a \in G\}$ for a positive integer N. Yahya et all [10] used same $P_N(G)$ defined by Sarmin and Mohamad [7]. They [10] expressed $P_N(G)$ by the equation $P_N(G) = |\{(x, y) \in G \times G | x^N y = yx^N\}|/(|G|^2)$. But to prove $P_N(D_n)$ they [10] did not use this equation. Their [10] proof for $P_N(D_n)$ can be obtained by using the equation $P_N(G) = |\{(x, y) \in G^N \times G | xy = yx\}|/(|G^N||G|)$ which is the relative commutativity degree $P(G^N,G)$. We define $P(G^N,G)$ as the relative N-th commutativity degree and denote it by $P_N(G,G)$. Yahya et all [10] obtained $P_N(D_n, D_n)$ for all N and for some dihedral groups D_n upto degree n = 12. In this paper We extend the concept of the relative N-th commutativity degree $P_N(G,G)$ as the relative (N,M) - thcommutativity degree $P_N^M(G,G) = P(G^N,G^M)$ for Positive integers N and M. $P_N^M(G,G)$ is the probability that a random element of G^N commutes with a random element of G^M . In this paper We find $P_N^M(D_n, D_n)$ for all N, M and n. Then $P_N^M(D_n)$ and $P_N^M(D_n, D_n)$ are improvements of $P_N(D_n)(or P(D_n))$ and $P_N(D_n, D_n)(or P(D_n))$ respectively. Finally we find all subgroups, all normal subgroups, the center and the commutator subgroup of D_n .

2. Preliminaries

Definition 2.1 [4,3]. Dihedral group D_n for $n \ge 3$ is defined as the rigid motions taking a regular n-gon back to itself, with operation being composition and obtained D_n as following :

(i) $D_n = \{1, x, x^2, \dots, x^{n-1}, y, yx, yx^2, \dots, yx^{n-1}\},\$

(ii) $y^2 = 1, x^n = 1 = x^0, xy = yx^{-1}, x^iy = yx^{-i}$ and $|D_n| = 2n$.

Definition 2.2 [8]. The commutativity degree P(G) of a finite group G is defined by

 $P(G) = |\{(x, y) \in G \times G | xy = yx\}| / (|G|^2).$

Definition 2.3 [2,6,7]. The N-th commutativity degree $P_N(G)$ of a finite group G is defined by

 $P_{N}(G) = |\{(\boldsymbol{x}, \boldsymbol{y}) \in \boldsymbol{G} \times \boldsymbol{G} | \boldsymbol{x}^{N} \boldsymbol{y} = \boldsymbol{y} \boldsymbol{x}^{N}\}|/(|\boldsymbol{G}|^{2}).$

Definition 2.4 [1]. The relative commutativity degree P(H,G) of a subgroup H of a finite group G is defined

by $P(H,G) = |\{(x,y) \in H \times G | xy = yx\}|/(|H||G|).$

Definition 2.5 [10]. The N-th commutativity degree $P_N(G)$ in [10] can be replaced by the relative N-th

commutativity degree $P_N(G,G) = P(G^N,G)$. $P_N(G,G)$ is the probability that a random element of G^N

commutes with a random element of G given by

$$P_N(G,G) = P(G^N,G) = |\{(x,y) \in G^N \times G | xy = yx\}|/(|G^N||G|).$$

Definition 2.6 [3]. A relation ~ on Z is called an equivalence relation on Z if

(i) $a \sim a \forall (for every) a \in Z$, (ii) $a \sim b \Rightarrow b \sim a$ and (iii) $a \sim b$ and $b \sim c \Rightarrow a \sim c$.

Theorem 2.7 [3]. An equivalence relativon \sim on a set Z decomposes Z into disjoint equivalence classes and [a] = [b] if and only if $a \sim b$. Where [x] denotes the equivalence class by $x \in Z$.

3. Representation Of Dihedral Group As A Group Of Residue Classes

Definition 3.1. Let Z be the set of integers and 2n be a positive integer. Let $a, b \in Z$. We define a relation \sim on Z by

 $a \sim b \Leftrightarrow 2n \text{ divides } (a - b) \Leftrightarrow a - b = 2nq \text{ for some } q \in Z.$

Then ~ is called the relation of congruent modulo 2n and We write $a \equiv b \pmod{2n}$.

Lemma 3.2. The relation ~ of congruent modulo 2n is an equivalence relation on Z.

Proof. Let $a, b, c \in Z$. We can write a - a = 2n(0). Then from definition 3.1, We get $a \sim a$. Let $a \sim b$. Then from definition 3.1, We get a - b = 2nq for some $q \in Z$, implies b - a = 2n(-q), implies $b \sim a$. Let $a \sim b$ and $b \sim c$. Then from definition 3.1, We get $a - b = 2nq_1$ and $b - c = 2nq_2$ for some $q_1, q_2 \in Z$, implies $a - b + b - c = 2nq_1 + 2nq_2$, implies $a - c = 2n(q_1 + q_2)$, implies $a \sim c$. It follows that \sim is an equivalence relation on Z.

Definition 3.3. Let $a \in z$ and \sim be the relation of congruent modulo 2n. Let

 $[a] = \{x \in z | x \sim a\}.$

Then [a] is called equivalence class by a. [a] is also called residue class modulo 2n by a. We can also denote residue class modulo 2n by $[a]_n$.

Lemma 3.4. The relation ~ of congruent modulo 2n On Z decomposes Z into disjoint residue classes.

Proof. The proof follows from lemma 3.2, definition 3.3 and the fact that an equivalence relation decomposes a set into disjoint equivalence classes.

Lemma 3.5. Let $a, b \in Z$. Let [a] and [b] be the residue classes modulo 2n. Then,

 $[a] = [b] \Leftrightarrow 2n \text{ divides } (a - b) \Leftrightarrow a - b = 2nq \text{ for some } q \in Z.$

Proof. Let $a, b \in Z$. Since the relation ~ of congruent modulo 2n is an equivalence relation so $[a] = [b] \Leftrightarrow$

 $a \sim b$. Then the proof follows from definition 3.1.

Lemma 3.6. Let ~ be the relation of congruent modulo 2n on Z. Then,

- (i) $a \in Z \implies [a] = [r]$, for some $0 \le r < 2n$,
- (ii) $0 \le r, s < 2n, r \ne s \Longrightarrow [r] \ne [s],$
- (iii) for all $k, a \in Z$, $[2kn + a] = [a] = [r] \in Z_{2n}$, for some $0 \le r < 2n$, and
- (iv) for all k, [2kn] = [2n] = [0].

Proof.

- (i) Let $a \in Z$. Then by division algorithm, We get a = 2nq + r for some $q \in Z$ and $0 \le r < 2n$, implies a - r = 2nq. Then from lemma 3.5, We get [a] = [r].
- (ii) Let $0 \le r, s < 2n, r \ne s$, implies $0 \le |r s| < 2n$, implies 2n does not divide r s. Then from lemma 3.5, We get $[r] \ne [s]$.
- (iii) We can write (2kn + a) a = 2kn. Then from lemma 3.5, We get [2kn + a] = [a]. Then proof follows from lemma 3.6 (i).
- (iv) The proof follows from lemma 3.5.

Lemma 3.7. Let Z_{2n} denote the set of residue classes modulo 2n. Then,

 $Z_{2n} = \{ [r] | 0 \le r < 2n \} = \{ [2r], [2r+1] | 0 \le r < n \} and | Z_{2n} | = 2n.$

Proof. The proof follows from lemma 3.6 (i, ii).

Definition 3.8. Let $[r], [s] \in \mathbb{Z}_{2n}$. We define an operation '.' On \mathbb{Z}_{2n} by

- (i) [r].[s] = [r+s], if s is even, and
- (ii) [r].[s] = [-r+s] = [2n-r+s], if s is odd.

Lemma 3.9. The binary operation '.' on Z_{2n} defined by definition 3.8 (i, ii) is well defined.

Proof. Let $a_1, a_2, b_1, b_2 \in Z$. Let $[a_1] = [a_2]$ and $[b_1] = [b_2]$. Then from lemma 3.5, We get $a_1 - a_2 = 2nq_1$, and $b_1 - b_2 = 2nq_2$ for some $q_1, q_2 \in Z$, implies $(a_1 + b_1) - (a_2 + b_2) = 2n(q_1 + q_2)$ and $(-a_1 + b_1) - (-a_2 + b_2) = 2n(q_2 - q_1)$, b_1 and b_2 both are even or both are odd, implies $[a_1 + b_1] = [a_2 + b_2]$ and $[-a_1 + b_1] = [-a_2 + b_2]$, b_1 and b_2 both are even or both are odd. Then from definition 3.8 (i,ii), We get $[a_1].[b_1] = [a_2].[b_2]$. From lemma 3.6(iii), We get [-r + s] = [2n - r + s].

Lemma 3.10.
$$Z_{2n}$$
 is closed under \dot{z} , that is $[r], [s] \in Z_{2n} \Longrightarrow [r], [s] \in Z_{2n}, \forall [r], [s] \in Z_{2n}$

Proof. The proof follows from lemma 3.6 (i, iii) and definition 3.8 (i, ii).

Lemma 3.11. Z_{2n} *is associative under* \therefore *That is* [r]. $([s], [t]) = ([r], [s]), [t], \forall [r], [s], [t] \in Z_{2n}$.

Proof. Let s be even and t be even. Then from definition 3.8 (i), We get [r].([s].[t]) = [r].([s+t]) = [r + s + t] = [r + s].[t] = ([r].[s]).[t].

Let s be even and t be odd. Then from definition 3.8 (ii), We get [r].([s].[t]) = [r].[-s+t] = [-r-s+t] = [r+s].[t] = ([r].[s]).[t].

Let s be odd and t be even. Then from definition 3.8 (i, ii), We get [r]. ([s], [t]) = [r]. [s + t] = [-r + s + t] = [-r + s]. [t] = ([r], [s]). [t].

Let s be odd and t be odd. Then from definition 3.8 (i, ii), We get [r]. ([s], [t]) = [r], [-s + t] = [r - s + t] = [-r + s], [t] = ([r], [s]), [t].

Lemma 3.12. [0] is identity of Z_{2n} under \therefore That is [r]. [0] = [0]. [r] = [r], $\forall [r] \in Z_{2n}$.

Proof. Let $[r] \in Z_{2n}$ if r is even, then from definition 3.8(i), We get $[r] \cdot [0] = [r + 0] = [r] = [0 + r] = [0] \cdot [r]$. If r is odd, then from definition 3.8 (i, ii), We get $[r] \cdot [0] = [r + 0] = [r] = [-0 + r] = [0] \cdot [r]$.

Lemma 3.13. Let $[r] \in \mathbb{Z}_{2n}$. Then inverse of [r] under '.' is given by

(i) $[r]^{-1} = [-r] = [2n - r]$, if r is even, and

(ii) $[r]^{-1} = [r]$, if r is odd.

Proof. Let $[r] \in \mathbb{Z}_{2n}$. If r is even, then from definition 3.8 (i), We get [r]. [-r] = [r - r] = [0] = [-r + r] = [-r]. [r], implies $[r]^{-1} = [-r]$. If r is odd, then from definition 3.8(ii), We get [r]. [r] = [-r + r] = [0], implies $[r]^{-1} = [r]$. Also from lemma 3.6(iii), We get [-r] = [2n - r].

Lemma 3.14. Z_{2n} is not commutative for $n \ge 3$ under \therefore

Proof. Let $[1], [2] \in Z_{2n}$. Then from definition 3.8 (i, ii), We get [1], [2] = [1 + 2] = [3] and [2], [1] = [-2 + 1] = [-1] = [2n - 1], by lemma 3.6 (iii). If $n \ge 3$, then $2n - 1 \ne 3$ and $0 \le 2n - 1, 3 < 2n$. Then from lemma 3.6(ii), We get $[3] \ne [2n - 1]$. Then it follows that $[1], [2] \ne [2], [1]$.

Theorem 3.15. The set Z_{2n} of residue classes modulo 2n forms a group of order 2n under '.'. Further Z_{2n} is

non-abelian for $n \geq 3$ *.*

Proof. The proof follows from lemma 3.7, definition 3.8 and lemma (3.9, 3.10, 3.11, 3.12, 3.13, 3.14).

Theorem 3.16. The dihedral group D_n of degree n has a new representation as a group of residue classes modulo 2n given by

 $D_n = Z_{2n} = \{ [r] | 0 \le r < 2n \} = \{ [2r], [2r+1] | 0 \le r < n \}$ under '. 'defined by definition 3.8 (i, ii).

Proof. Let D_n be dihedral group of degree n defined by definition 2.1 [3,4]. We define a mapping $f: Z_{2n} \to D_n$ from Z_{2n} into D_n by $f([2r]) = x^r$ and $f([2r + 1]) = yx^r$, where r = 0, 1, 2, ..., (n-1). Let $[l], [m] \in Z_{2n}$. Let l = 2r and m = 2t + 1. Then from definition 2.1 (i, ii), definition 3.8 (ii) and definition of f, We get $f([l], [m]) = f([2r], [2t + 1]) = f([-2r + 2t + 1]) = f([2(-r + t) + 1]) = yx^{-r+t} = yx^tx^{-r} = x^ryx^t = f([2r])f([2t + 1]) = f([l])f([m])$. Let l = 2r and m = 2t. Then from definition 3.8 (i) and definition of f, We get f([l], [m]) = f([2r], [2t]) = f([2r], [2

 $f([2r+2t]) = f([2(r+t)]) = x^{r+t} = x^r x^t = f([2r])f([2t]) = f([l])f([m]).$

Let l = 2r + 1 and m = 2t. Then from definition 3.8 (i) and definition of f, We get $f([l], [m]) = f([2r + 1], [2t]) = f([2r + 1 + 2t]) = f([2(r + t) + 1]) = yx^{r+t} = yx^rx^t$ =f([2r + 1])f([2t]) = f([l])f([m]). Let l = 2r + 1 and m = 2t + 1. Then from definition 2.1 (ii), definition 3.8 (ii) and definition of f, We get $f([l], [m]) = f([2r + 1], [2t + 1]) = f([-2r + 2t]) = ([2(-r + t)]) = x^{-r+t} = x^{-r}x^t = x^{-r}.1.x^t = x^{-r}y^2x^t = x^{-r}yyx^t = yx^ryx^t = f([2r + 1])f([2t + 1]) = f([l])f([m]).$

It follows that f is a homomorphism. From definition 2.1(i,ii), lemma 3.7 and definition of f, it follows that f is one-one and onto. Hence We get $Z_{2n} \cong D_n$. Then the proof follows from lemma 3.7 and theorem 3.15.

Definition 3.17. Let D_n be dihedral group of degree n given by theorem 3.16. Then $[r] \in D_n$ will be called even

or odd element of D_n according as r is even or odd.

Lemma 3.18. Let E and O be defined by

- (*i*) $E = \{ [2r] | 0 \le r < n \}, and$
- (*ii*) $O = \{ [2r+1] | 0 \le r < n \}.$

Then E and O are sets of even and odd elements of D_n and

- (*iii*) $D_n = E \cup O, E \cap O = \emptyset = null,$
- (*iv*) |E| = n, |O| = n and $|D_n| = 2n$.

Proof. The proof follows from theorem 3.16.

Lemma 3.19. Let D_n be dihedral group of degree n and $[s], [2r], [2r+1], [l] \in D_n$. Then,

- (i) K[2r] = [K(2r)], for any positive integer K,
- (ii) L[2r+1] = [0], if L is even,
- (iii) L[2r+1] = [2r+1], if L is Odd, and
- (iv) $[s] = [l] \Leftrightarrow [s l] = [0],$

where N[r] denote the N-th power of $[r] \in D_n$. That is N[r] = $[r]^N$.

Proof. (i) From definition 3.8 (i), We get, 1[2r] = [2r], 2[2r] = [2r], [2r] = [2r + 2r] = [2(2r)], 3[(2r)] = [2r + 2r] = [2(2r)], 3[(2r)] = [2(2r)] = [2(2r)], 3[(2r)] = [2(2r)], 3[(2r)] = [2(2r)], 3

2[2r]. [2r] = [2(2r)]. [2r] = [2(2r) + 2r] = [3(2r)]. Continuing, We get, K[2r] = [K(2r)].

(ii) Let L be even. Then L = 2q for some $q \in Z$. Then from definition 3.8 (ii) and lemma 3.19(i), We get,

L[2r+1] = 2q[2r+1] = q([2r+1], [2r+1]) = q[-2r-1+2r+1] = q[0] = [q(0)] = [0].

(iii) Let L be odd. Then L = 2q+1 for some $q \in Z$.

Then from lemma 3.19(ii) and definition 3.8 (ii), We get, L[2r + 1] = (2q + 1)[2r + 1] =

 $2q[2r + 1] \cdot [2r + 1] = [0] \cdot [2r + 1] = [-0 + 2r + 1] = [2r + 1].$

(iv) Using lemma 3.5 and lemma 3.6 (iv), We get,

 $[s] = [l] \Leftrightarrow s - l = 2nq \Leftrightarrow [s - l] = [2nq] = [0].$

4. The (N,M)-th Commutativity Degree Of Dihedral Groups

Definition 4.1. We define the (N,M)-th commutativity degree $P_N^M(G)$ of a finite group G by

$$P_N^M(G) = |\{(x, y) \in G \times G | x^N y^M = y^M x^N\}| / (|G|^2),$$

for positive integers N and M.

Definition 4.2. The (N, M)-th commutativity set $C_N^M(A \times B)$ of A×B subset of $D_n \times D_n$ is defined by

 $C_N^M(A \times B) = \{([r], [s]) \in A \times B | N[r]. M[s] = M[s]. N[r]\},\$

where We define $L[r]=[r]^L$ for any integer L.

Lemma 4.3. Let D_n be dihedral group of degree n. Then,

 $P_N^M(D_n) = \left[\left| C_N^M(E \times E) \right| + \left| C_N^M(E \times O) \right| + \left| C_N^M(O \times E) \right| + \left| C_N^M(O \times O) \right| \right] / (4n^2).$

Proof. From definition (4.1, 4.2), for $G = D_n$ and $|D_n| = 2n$, We get,

 $P_N^M(D_n) = \left| \{ ([r], [s]) \in D_n \times D_n | N[r] . M[s] = M[s] . N[r] \} \right| / (4n^2), and$

 $C_N^M(D_n \times D_n) = \{([r], [s]) \in D_n \times D_n | N[r]. M[s] = M[s]. N[r]\}.$

Then, We get, $P_N^M(D_n) = |C_N^M(D_n \times D_n)|/(4n^2)$. From lemma 3.18(iii, iv), We get $D_n \times D_n = (E \times E) \cup (E \times O) \cup (O \times E) \cup (O \times O)$, where any two of $E \times E$, $E \times O, O \times E$ and $O \times O$ are disjoint. Then using definition 4.2, We get, $|C_N^M(D_n \times D_n)| = |C_N^M(E \times E)| + |C_N^M(E \times O)| + |C_N^M(O \times E)| + |C_N^M(O \times O)|$. Then We get lemma 4.3.

Lemma 4.4. Let D_n be dihedral group of degree n. Then,

- (i) $P_N^1(D_n) = P_N(D_n)$, and
- (*ii*) $P_1^1(D_n) = P(D_n).$

Proof. The proof follows from definition (2.2, 2.3, 4.1) for $G = D_n$.

Lemma 4.5. $|C_K^L(A \times B)| = |C_L^K(B \times A)|$, for any L and K.

Proof. From definition 4.2, We get, $C_K^L(A \times B) = \{([r], [s]) \in A \times B | K[r], L[s] = L[s], K[r]\}$ and

 $C_L^K(B \times A) = \{([s], [r]) \in B \times A | L[s]. K[r] = K[r]. L[s]\}.$ Then it follows that $([r], [s]) \in C_K^L(A \times B) \Leftrightarrow$

 $([s], [r]) \in C_L^K(B \times A)$, implies $|C_K^L(A \times B)| = |C_L^K(B \times A)|$.

Lemma 4.6. Let D_n be dihedral group of degree n. Then,

(i) $|C_K^L(E \times O)| = |C_L^K(O \times E)| = |C_K^1(E \times O)| = |C_1^K(O \times E)|$, if L is odd and K is any integer,

(ii) $|C_K^L(0 \times 0)| = |C_L^K(0 \times 0)| = |C_1^1(0 \times 0)|$, if L and K both are odd,

(iii) $|C_K^L(E \times O)| = |C_L^K(O \times E)| = |C_K^L(O \times O)| = |C_L^K(O \times O)| = n^2$, if L is even and K is any integer, and

(*iv*) $|C_K^L(E \times E)| = n^2$, if L and K are any positive integer.

Proof.

- (i) From definition 4.2, We get, $C_K^L(E \times O) = \{([r], [s]) \in E \times O | K[r], L[s] = L[s], K[r]\}$ and $C_K^1(E \times O) = \{([r], [s]) \in E \times O | K[r], [s] = [s], K[r]\}$. Let L be odd. Then from lemma 3.19 (iii), We get, L[s] = [s]. Then it follows that $C_K^L(E \times O) = C_K^1(E \times O)$, implies $|C_K^L(E \times O)| = |C_K^1(E \times O)|$. Then using lemma 4.5, We get lemma 4.6 (i).
- (ii) From definition 4.2, We get $C_K^L(0 \times 0) = \{([r], [s]) \in 0 \times 0 | K[r], L[s] = L[s], K[r]\}$ and $C_K^1(0 \times 0) = \{([r], [s]) \in 0 \times 0 | [r], [s] = [s], [r]\}$. If L and K both are odd, then from lemma 3.19 (iii), We get L[s] = [s] and K[r] = [r]. Then it follows that $C_K^L(0 \times 0) = C_1^1(0 \times 0)$, implies $|C_K^L(0 \times 0)| = |C_1^1(0 \times 0)|$. Then, using lemma 4.5, We get lemma 4.6 (ii).
- (iii) From definition 4.2, We get $C_K^L(E \times O) = \{([r], [s]) \in E \times O | K[r], L[s] = L[s], K[r]\}$ and

 $C_K^L(O \times O) = \{([r], [s]) \in O \times O | K[r], L[s] = L[s], K[r]\}$. If L is even, then from Lemma 3.19 (ii), We get L[s] = [0]. Then from lemma 3.12, We get $K[r], L[s] = L[s], K[r], \forall [r] \in D_n, \forall [s] \in O$. Then it follows that,

 $C_K^L(E \times 0) = E \times 0, C_K^L(0 \times 0) = 0 \times 0.$

Then from lemma 3.18 (iv), We get $|C_K^L(E \times 0)| = |E||0| = n$. $n = n^2$ and $|C_K^L(0 \times 0)| = |0||0| = n$. $n = n^2$. Then from lemma 4.5, We get lemma 4.6 (iii).

- (iv) From definition 4.2, We get $C_K^L(E \times E) = \{([r], [s]) \in E \times E | K[r], L[s] = L[s], K[r]\}$. Since [r] and [s] are even, so from 3.19 (i), it follows that K[r] and L[s] are even. From definition 3.8(i), We get K[r], L[s] = [Kr], [Ls] = [Kr + Ls] = [Ls + Kr] = [Ls], [Kr]
 - = *L*[*s*]. *K*[*r*], ∀ [*r*], [*s*] ∈ *E*. Then It follows that $|C_K^L(E \times E)| = |E \times E| = |E|$. $|E| = n^2$ using lemma 3.18 (iv).

Lemma 4.7. If K is any positive integer and $[2t] \in D_n$, then K[2t] = [0] has p = (n, K) number of solutions as [2t] = [2vc], $0 \le v < p, c = n / p$. **Proof.** Let p = greatest common divisor of n and K = (n, K). Then n = pc, K = pd, (d, c) = 1. Let $[2t] \in D_n$ and K[2t] = [0]. Let $0 \le 2t < 2n$. Then, from lemma 3.19(i), We get [2Kt] = [0]. Then from lemma 3.5, We get K(2t) = 2rn, for some r, $0 \le 2t < 2n$, implies t = rn/K, $K \setminus rn(K \text{ divides } rn)$, $0 \le 2rn/K < 2n$, implies, t = rpc /pd, $pd \setminus rpc$, $0 \le 2rpc/pd < 2pc$, c = n/p, p = (n, K), (d, c) = 1, implies t = rc/d, $d \setminus r$, $0 \le r/d < p$, c = n/p, p = (n, K), implies t = vdc/d, r = vd, $0 \le vd/d < p$, c = n/p, p = (n, K), implies t = vdc/d, r = vd, $0 \le vd/d < p$, c = n/p, p = (n, K), implies [2t] = [2vc], $0 \le v < p$, c = n/p, t = vc, p = (n, K). Now $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$, $0 \le v < p$, c = n/p, implies $0 \le 2vc < 2pc$. Then from lemma 3.6 (ii), it follows that [2t] = [2vc], for v = 0,1,2..., (p-1), are p = (n, K) different elements of D_n . Let t be any integer. Then by division algorithm We get 2t = 2nq + 2l, $0 \le 2l < 2n$. Then from lemma 3.6(iii), We get $[2t] = [2nq + 2l] = [2l], 0 \le 2l \le 2n$, implies K[2t] = K[2l] and $K[2t] = [0] \Leftrightarrow K[2l] = [0], 0 \le 2l < n$. Then by previous case We get the theorem.

Lemma 4.8. Let K be any integer. Then $|C_K^1(E \times O)| = |C_1^K(O \times E)| = (n, 2K)n$.

Proof.Fromdefinition4.2,Weget $C_K^1(E \times 0) =$ $\{([2t], [2r+1]) \in E \times 0 | K[2t]. [2r+1] = [2r+1]. K[2t]\}.$ Then from definition 3.8 (i,ii) and lemma 3.19(i, iv), We get $C_K^1(E \times 0) = \{([2t], [2r+1]) \in E \times 0 | 2K[2t] = [0]\}.$ Then from lemma 3.18(iv) and lemma4.7, We get $C_K^1(E \times 0) = \{([2vc], [2r+1]) | 0 \le v < p, 0 \le r < n, p = (n, 2K), c = n/p\},$ implies $|C_K^1(E \times 0)| = pn = (n, 2K)n.$ From lemma 4.5, We get $|C_1^K(0 \times E)| = |C_K^1(E \times 0)| = (n, 2K)n.$

Lemma 4.9. $|C_1^1(0 \times 0)| = (n, 2)n$.

Proof. From definition 4.2, We get $C_1^1(0 \times 0) = \{([2t+1], [2r+1]) \in 0 \times 0 | [2t+1], [2r+1] = [2r+1], [2t+1]\}$. Then from definition 3.8 (ii) and lemma 3.19 (iv), We get $C_1^1(0 \times 0) = \{([2t+1], [2r+1]) \in 0 \times 0 | 2[2(t-r)] = [0]\}$. Then from lemma 3.18 (iv), lemma 3.19(iv) and lemma 4.7, We get $C_1^1(0 \times 0) = \{([2t+1], [2r+1]) | [2t-2r] = [2vc], 0 \le v < p, 0 \le r < n, c = n/p, p = (n, 2)\}$ $\{([2vc+2r+1], [2r+1]) | 0 \le v < p, 0 \le r < n, c = n/p, p = (n, 2)\},$ implies $|C_1^1(0 \times 0)| = pn = (n, 2)n$.

Theorem 4.10. If N and M both are odd positive integers, then,

 $P_N^M(D_n) = [n + (n, 2N) + (n, 2M) + (n, 2)]/[4n].$

Proof. Let N and M both be odd. Then from lemma 4.6 (i, ii, iv), lemma 4.8 and lemma 4.9, We get $|C_N^M(E \times O)| = |C_N^1(E \times O)| = (n, 2N)n$, $|C_N^M(O \times E)| = |C_1^M(O \times E)| = (n, 2M)n$, $|C_N^M(O \times O)| = |C_1^1(O \times O)| = (n, 2)n$ and $|C_N^M(E \times E)| = n^2$. Then from lemma 4.3, We get $P_N^M(D_n) = [n^2 + (n, 2N)n + (n, 2M)n + (n, 2)n]/[4n^2] = [n + (n, 2N) + (n, 2M) + (n, 2)]/[4n]$.

Theorem 4.11. If N is even and M is odd, then,

 $P_N^M(D_n) = [3n + (n, 2N)]/[4n].$

Proof. Let N be even and M be odd. Then from lemma 4.6 (i,ii,iii) and lemma 4.8, We get,

$$|C_N^M(E \times O)| = |C_N^1(E \times O)| = (n, 2N)n, |C_N^M(O \times E)| = n^2, |C_N^M(O \times O)| = n^2$$

and $|C_N^M(E \times E)| = n^2$. Then from lemma 4.3, We get $P_N^M(D_n) = [n^2 + (n, 2N)n + n^2 + n^2]/[4n^2] =$

[3n + (n, 2N)]/(4n).

Theorem 4.12. If N is odd and M is even, then,

$$P_N^M(D_n) = [3n + (n, 2M)]/[4n].$$

Proof. Let N be odd and M be even. Then from lemma 4.6 (i, iii, iv) and lemma 4.8, We get

$$|C_N^M(E \times O)| = n^2, |C_N^M(O \times E)| = |C_1^M(O \times E)| = (n, 2M)n, |C_N^M(O \times O)| = n^2$$
 and

 $|C_N^M(E \times E)| = n^2$. Then from lemma 4.3, We get

$$P_N^M(D_n) = \left[n^2 + n^2 + (n, 2M)n + n^2\right] / [4n^2] = \left[3n + (n, 2M)\right] / [4n].$$

Theorem 4.13. If N and M both are even, then, $P_N^M(D_n) = 1$.

Proof. Let N and M both be even. Then from lemma 4.6 (iii, iv), We get $|C_N^M(E \times 0)| = n^2$, $|C_N^M(O \times E)| = n^2$, $|C_N^M(O \times 0)| = n^2$ and $|C_N^M(E \times E)| = n^2$. Then from lemma 4.3 We get $P_N^M(D_n) = [n^2 + n^2 + n^2 + n^2]/[4n^2] = 1$.

Theorem 4.14. The N-th commutativity degree of dihedral group of degree n is given by

(i)
$$P_N^1(D_n) = P_N(D_n) = [n + (n, 2N) + 2(n, 2)]/[4n]$$
, if N is odd and

(*ii*) $P_N^1(D_n) = P_N(D_n) = [3n + (n, 2N)]/[4n]$, if N is even.

Proof. The proof follows from lemma 4.4(i), theorem 4.10 and theorem 4.11, for M = 1.

Theorem 4.15. Let D_n be dihedral group of degree n. Then,

$$P_1^1(D_n) = P(D_n) = [n + 3(n, 2)]/[4n]$$

Theorem 4.16[2]. Let D_n be dihedral group of degree n, where $n \ge 3$, d = g.c.d.(n, N) and

r = n/d. Then,

- (i) $P_N(D_n) = 1/4 + 1/(2n) + 1/(4r)$, n is odd, N is odd,
- (ii) $P_N(D_n) = 1/4 + 2[1/(2n) + 1/(4r)]$, n is even, N is odd,
- (iii) $P_N(D_n) = 3/4 + 1/(2r)$, r is even, N is even,
- (iv) $P_N(D_n) = 3/4 + 1/(4r)$, *r* is odd, *N* is even.

Proof. Let d = g.c.d.(n, N) and r = n/d = n/(n, N). Then (n, N) = n/r. Le N be odd. If n is odd, then (n, N) = n/r.

2) = 1 and (n, 2N) = (n, N) = n/r. If n is even, then (n, 2) = 2 and (n, 2N) = 2(n, N) = 2n/r. Let N be

even. If r = n/d = n/(n, N) is even, then (n, 2N) = 2(n, N) = 2n/r. If r is odd, then, (n, 2N) = (n, N) =

n/r. Then proof follows from theorem 4.14 by putting the values of (n, 2) and (n, 2N).

Theorem 4.17 [1]. Let D_n be dihedral group of degree n. Then, (i) $P(D_n) = (n+3)/(4n)$, if n is odd and (ii) $P(D_n)=(n+6)/(4n)$, if n is even.

Proof. Let n be odd, then (n, 2) = 1. Let n be even, then (n, 2) = 2. Then the proof follows from theorem 4.15 by putting the values of (n, 2).

Theorem 4.18 [6,7]. Let D₄ be dihedral group of degree 4. Then,

- (i) $P_N(D_4) = 5/8$, if N is odd and
- (ii) $P_N(D_4) = 1$, if N is even.

Proof. Let n = 4. Then (n, 2) = (4, 2) = 2. If N is odd, then (n, 2N) = (4, 2N) = 2. If N is even, then (n, 2N) = 2.

(4, 2N) = 4. Then from theorem 4.14 (i, ii), We get $P_N(D_4) = 5/8$, if N is odd and $P_N(D_4) = 1$, if N is even.

5. The Relative (N,M)-th Commutativity Degree Of Dihedral Groups

Definition 5.1. The relative (N,M)-th commutativity degree

 $P_N^M(G,G)$ of a finite group G is defined by

 $P_N^M(G,G) = P(G^N,G^M) = |\{(x,y) \in G^N \times G^M | xy = yx\}|/(|G^N||G^M|), \text{ for positive integers N and M. Then}$

 $P_N^M(G, G)$ is the probability that a random element of G^N commutes with a random element of G^M .

Definition. 5.2. The commutativity set $C(A \times B)$ of $(A \times B)$ subset of $D_n \times D_n$ is defined by

 $C(A \times B) = \{([r], [s]) \in A \times B | [r]. [s] = [s]. [r]\}.$

Lemma 5.3. The relative (N,M)-th commutativity degree of dihedral group D_n is given by

 $P_{N}^{M}(D_{n}, D_{n}) = |\mathcal{C}(ND_{n} \times MD_{n})|/(|ND_{n}||MD_{n}|),$

where We define $KA = A^{K}$, the set of distinct elements of K-th power of elements of A, for any subset A of D_n . **Proof.** From definition 5.1, for $G = D_n$, We get $P_N^M(D_n) = |\{([r], [s]) \in ND_n \times MD_n | [r], [s] = [s], [r]\}|/|ND_n|$

$$(|ND_n||MD_n|).$$

From definition 5.2, for $A = ND_n$ and $B = MD_n$, We get $C(ND_n \times MD_n) = \{([r], [s]) \in ND_n \times MD_n | [r], [s] = ND_n \otimes MD_n | [r], [s] = ND_n | [r], [s] = ND_n \otimes MD_n$

[s]. [r]}. Then We get lemma 5.3.

Lemma 5.4. If D_n is dihedral group of degree n. Then,

(i) $P_N^1(D_n, D_n) = P_N(D_n, D_n)$, and

(ii) $P_1^1(D_n, D_n) = P_1^1(D_n) = P(D_n).$

Proof. The proof follows from definition (2.2, 2.5, 4.1, 5.1) for $G = D_n$.

Lemma 5.5. Let *E* and *O* be the sets of even and odd elements of D_n respectively. If *K* is any positive integer and $KE = \{K[2t]|[2t] \in E\}$, Then,

(i) |KE| = n/(n, K), and

(ii) $|C(KE \times 0)| = |C(0 \times KE)| = [(n, 2K)n]/(n, K).$

Proof. Let $[2r], [2t] \in E$. We define a relation ~ on E by $[2r] \sim [2t] \Leftrightarrow K[2r] = K[2t]$. Then it is easy to see that ~ is an equivalence relation on E and decomposes E into disjoint equivalence classes. Let $[\overline{2r}]$ be the class containing [2r]. Then $[\overline{2r}] = \{[2t] \in E | K[2t] = K[2r]\}$. Then from lemma 3.19 (i, iv), We get $[\overline{2r}] = \{[2t] \in E | K[2(t-r)] = [0]\}$. Then from lemma 4.7, We get $|[\overline{2r}]| = (n, K)$. Let there be *l* distinct classes. Then, l(n, K) = |E|. Then from lemma 3.18 (iv), We get l(n, K) = n, implies l = n/(n, K). If $[2t], [2s] \in [\overline{2r}]$, then K[2t] = K[2s] and so one element of KE will be obtained from all the elements of one class. Then it follows that |KE| = l = n/(n, K). Which is lemma 5.5(i).

Let $P = \{[2t] \in E | K[2t], [2r+1] = [2r+1], K[2t], \text{ for some } [2r+1] \in O\}$. Then using definition 3.8 (i, ii) and lemma 3.19 (i, ii), We get $P = \{[2t] \in E | 2K[2t] = [0]\}$. Then from lemma 4.7, We get $P = \{[2vc] | 0 \le v < p, p = (n, 2K), c = n/p\}$ and |P| = (n, 2K), implies P is independent of [2r+1], implies, $K[2t], [2r+1] = [2r+1], K[2t], \forall [2t] \in P, \forall [2r+1] \in O$. Then it follows that every element of KE obtained from P will commute with all n odd elements of O. Let $[2t] \in P$ and $[2s] \in [\overline{2t}]$. Then, $K[2t], [2r+1] = [2r+1], K[2t], \forall [2r+1] \in O, and K[2s] = K[2t], implies, K[2s], [2r+1] = [2r+1], K[2s], \forall [2r+1] \in O,$ implies $[2s] \in P$. Then it follows that P is union of some q equivalence classes. Then it follows that q.(n, K) = |P| = (n, 2K), implies, q = (n, 2K)/(n, K). Also it follows that q elements of KE will be obtained from elements of P and these q elements of KE will commute with all n odd elements of O. Then from definition of P and definition 5.2, We get,

 $|C(KE \times 0)| = |\{([r], [s]) \in KE \times 0 | [r], [s] = [s], [r]\}| = qn = \{(n, 2K)/(n, K)\}.n = (n, 2K)/(n, K)\}$

 $\{(n, 2K)n\}/(n, K)$. From definition 5.2, We get $C(KE \times 0) = \{([r], [s]) \in KE \times 0 | [r], [s] = [s], [r]\}$ and

 $C(0 \times KE) = \{([s], [r]) \in O \times KE | [s], [r] = [r], [s]\}.$

Then, $([r], [s]) \in (KE \times 0) \Leftrightarrow [r]. [s] = [s]. [r] \Leftrightarrow [s]. [r] = [r]. [s] \Leftrightarrow ([s], [r]) \in C(0 \times KE).$

Then it follows that $|C(O \times KE)| = |C(KE \times O)| = \{(n, 2K)n\}/(n, K), \text{ which is lemma 5.5 (ii).}$

Lemma 5.6. Let E and O be the sets of even and odd elements of D_n respectively. Then,

- (i) $|C(KE \times LE)| = (n^2)/\{(n, K)(n, L)\}$, for any positive integers K and L, and
- (ii) $|C(0 \times 0)| = (n, 2)n.$

Proof.

(i) From definition 5.2, We get $C(KE \times LE) = \{([r], [s]) \in KE \times LE | [r], [s] = [s], [r]\}$.

From lemma 3.19 (i) it follows that elements of KE and LE are always even for any K and L. From definition 3.8(i), it follows that any two even elements will always commute. Then it follows that $|C(KE \times LE)| = |KE||LE|$.

Then from lemma 5.5(i), We get, $|C(KE \times LE)| = \{n/(n, K)\}, \{n/(n, L)\} = (n^2)/\{(n, K)(n, L)\}.$

(ii) From definition (4.2, 5.2), We get

$$C_1^1(0 \times 0) = C(0 \times 0) = \{([r], [s]) \in 0 \times 0 | [r], [s] = [s], [r]\}$$
. Then, using lemma 4.9 We get,

 $|C(0 \times 0)| = |C_1^1(0 \times 0)| = (n, 2)n.$

Lemma 5.7. Let E and O be the sets of even and odd elements of D_n respectively.

Let $KE = \{K[2t] | [2t] \in E\}$ and $LO = \{L[2r + 1] | [2r + 1] \in O\}$. Then,

- (i) $[0] \in KE$, for any integer K,
- (ii) LO = O, if L is odd integer,
- (iii) $LO = \{[0]\}, \text{ if } L \text{ is even integer},$
- (iv) $KE \cap O = \emptyset = null$, for any integer K, and
- (v) $|KE \cup O| = \{n/(n, K)\} + n$, for any integer K.

Proof.

- (i) From lemma 3.18(i), We get $[0] \in E.$ Then using lemma 3.19(i), We get $K[0] = K[2(0)] = [K(2(0))] = [0] \in KE.$
- (ii) Let L be odd and $[2r + 1] \in O$. Then from lemma 3.19(iii), We get L[2r + 1] = [2r + 1]. Then $LO = \{L[2r + 1]|[2r + 1] \in O\} = \{[2r + 1]|[2r + 1] \in O\} = 0$
- (iii) Let L be even and $[2r+1] \in O$. Then from lemma 3.19(ii), We get L[2r+1] = [0]. Then $LO = \{L[2r+1]|[2r+1] \in O\} = \{[0]|[2r+1] \in O\} = \{[0]\}.$
- (iv) From lemma 3.19(i), it follows that elements of $KE = \{K[2t]|[2t] \in E\} = \{[2Kt]|[2t] \in E\}$ are even. But elements of O are odd. Therefore $KE \cap O = \emptyset = null$.
- (v) From (iv), We get $KE \cap O = \emptyset$ so We get $|KE \cup O| = |KE| + |O|$. Then from 3.18(iv) and lemma 5.5(i), We get $|KE \cup O| = \{n/(n, K)\} + n$.

Theorem 5.8. Let N and M both be odd. Then,

$$P_N^M(D_n, D_n) = [n + (n, 2N)(n, M) + (n, 2M)(n, N) + (n, 2)(n, N)(n, M)] / [n\{1 + (n, N)\}\{1 + (n, M)\}]$$

Proof. Let N and M both be odd. Then using lemma 3.18(iii) and lemma 5.7(ii), We get

 $ND_n = NE \cup NO = NE \cup O$ and $MD_n = ME \cup MO = ME \cup O$. Then using lemma 5.7 (v), We get $|ND_n| = \{n/(n,N)\} + n$ and $|MD_n| = \{n/(n,M)\} + n$. From lemma 5.7(iv), it follows that any two of $NE \times ME$, $NE \times O$, $O \times ME$ and $O \times O$ are disjoint. Then using definition 5.2, We get $|C(ND_n \times MD_n)| = |C\{(NE \cup O) \times (ME \cup O)\}| = |C(NE \times ME)| + |C(NE \times O)| + |C(O \times ME)| + |C(O \times O)|$. Then using lemma 5.5 (ii) and lemma 5.6(i, ii), We get $|C(ND_n \times MD_n)| = (n^2)/\{(n,N)(n,M)\} + \{(n,2N)n\}/(n,N) + \{(n,2M)n\}/(n,M) + (n,2)n$. Then using lemma 5.3 We get $P_N^M(D_n, D_n) = |C(ND_n \times MD_n)|/(|ND_n||MD_n|)$

$$= [(n^2)/\{(n, N) (n, M)\} + \{(n, 2N) n\}/(n, N) + \{(n, 2M) n\}/(n, M) + (n, 2) n]/[\{n/(n, N)+n\}\{(n/(n, M)+n)\}]$$

$$= [n + (n, 2N)(n, M) + (n, 2M)(n, N) + (n, 2)(n, N)(n, M)] / [n\{1 + (n, N)\}\{1 + (n, M)\}].$$

Theroem 5.9. Let N be even and M be odd. Then,

 $P_N^M(D_n, D_n) = [n + (n, 2N)(n, M)] / [n\{1 + (n, M)\}].$

Proof. Let N be even and M be odd. Then using lemma 3.18(iii) and lemma 5.7(i, ii, iii), We get

$$ND_n = NE \cup NO = NE \cup \{[0]\} = NE \text{ and } MD_n = ME \cup MO = ME \cup O.$$

Then using lemma 5.5(i) and lemma 5.7(v), We get $|ND_n| = |NE| = n/(n, N)$ and $|MD_n| = |ME \cup 0| = n/(n, M) + n$. From lemma 5.7(iv), it follows that NE×ME and NE×O are disjoint. Then using definition 5.2,

We get $|C(ND_n \times MD_n)| = |C\{NE \times (ME \cup O)\}|$

$$= |C\{(NE \times ME) \cup (NE \times O)\}| = |C(NE \times ME)| + |C(NE \times O)|.$$

Then using lemma 5.5(ii) and lemma 5.6(i), We get

 $|C(ND_n \times MD_n)| = (n^2)/\{(n, N)(n, M)\} + \{(n, 2N)n\}/(n, N).$

Then using lemma 5.3, We get $P_N^M(D_n, D_n) = |C(ND_n \times MD_n)|/(|(ND_n||MD_n|) =$

 $[(n^2)/\{(n,N)(n,M)\} + \{(n,2N)n\}/(n,N)]/[\{n/(n,N)\}\{n/(n,M) + n\}] =$

 $[n + (n, 2N)(n, M)] / [n\{1 + (n, M)\}].$

Theorem 5.10. Let N be odd and M be even. Then,

 $P_N^M(D_n, D_n) = [n + (n, 2M)(n, N)]/[n\{1 + (n, N)\}].$

Proof. Let N be odd and M be even. Then from lemma 3.18(iii) and lemma 5.7 (i, ii, iii), We get $ND_n =$ NE \cup NO = NE \cup 0 and $MD_n =$ ME \cup MO = ME \cup {[0]} = ME. Then from lemma 5.5(i) and lemma 5.7(v) We get $|ND_n| = |NE \cup 0| = \{n/(n, N)\} + n$ and $|MD_n| = |ME| = n/(n, M)$. From lemma 5.7(iv), it follows that $NE \times ME$ and $O \times ME$ are disjoint. Then using definition 5.2, We get $|C(ND_n \times MD_n)| = |C\{(NE \cup 0) \times ME\}| = |C\{(NE \times ME) \cup (O \times ME)\}|$

 $=|C(NE \times ME)| + |C(O \times ME)|$. Then using lemma 5.5 (ii) and lemma 5.6(i), We get $|C(ND_n \times MD_n)| = (n^2)/\{(n, N)(n, M)\} + \{(n, 2M)n\}/(n, M).$

Then using lemma 5.3, We get $P_N^M(D_n, D_n) = |C(ND_n \times MD_n)|/(|ND_n||MD_n|) =$

 $[(n^2)/\{(n,N)(n,M)\} + \{(n,2M)n\}/(n,M)]/[\{n/(n,N)+n)\}\{n/(n,M)\}]$

 $= [n + (n, 2M)(n, N)] / [n\{1 + (n, N)\}].$

Theorem 5.11. Let N and M both be even. Then, $P_N^M(D_n, D_n) = 1$.

Proof. Let N and M both be even. Then from lemma 3.18(iii) and lemma 5.7(i, iii), We get ND_n= $NE \cup NO = NE \cup \{[0]\} = NE$ and MD_n= $ME \cup MO = ME \cup \{[0]\} = ME \cup \{[0]\} = ME$. Then using lemma 5.6(i), We get $|C(ND_n \times MD_n)| = |C(NE \times ME)| = (n^2)/\{(n, N)(n, M)\}.$ Using lemma 5.5(i), We get $|(ND_n)| = |NE| = n/(n, N)$ and $|(MD_n)| = |(ME)| = n/(n, M)$. Then using lemma 5.3, We get $P_N^M(D_n, D_n) = |C(ND_n \times MD_n)|/(|ND||MD_n|) = [(n^2)/\{(n, N)(n, M)\}] / [\{n/N)(n, M)\}$

(n, N){n/(n, M)}]=1.

Theorem 5.12. The relative N-th commutativity degree of dihedral group of degree n is given by

(i)
$$P_N^1(D_n, D_n) = P_N(D_n, D_n) = [n + (n, 2N) + 2(n, 2)(n, N)]/[2n\{1 + (n, N)\}]$$
, if N is odd, and

(*ii*)
$$P_N^1(D_n, D_n) = P_N(D_n, D_n) = [n + (n, 2N)]/[2n]$$
, if N is even.

Proof. If M = 1, then (n, M) = 1 and (n, 2M) = (n, 2). Then proof follows from Theorem (5.8, 5.9).

Theorem 5.13 [10]. Let D_3 be dihedral group of degree 3, then for K, $N \in \mathbb{Z}^+$, where K=0,1,2..., the relative

N-th commutativity degree of D_3 , $P_N(D_3, D_3)$ *is given as follows,*

(i)
$$P_N(D_3, D_3) = 1/2; N = 1 + 2K$$

(ii) $P_N(D_3, D_3) = 2/3; N = 2 + 6K, N = 4 + 6K$,

(iii)
$$P_N(D_3, D_3) = 1; N = 6 + 6K.$$

Proof. Let n = 3. If N = 1 + 2K, then (3, 2N) = (3, N) and (3, 2) = 1. Then from theorem 5.12(i),

we get $P_N(D_3, D_3) = [3 + (3, 2N) + 2(3, 2)(3, N)]/[2(3)\{1 + (3, N)\}] = [3 + (3, N) + 2(3, N)]/[2(3)\{1 + (3, N)\}]$

(3, N)] = [3{1 + (3, N)}] / [2(3){1 + (3, N)}] = 1/2. If N = 2 + 6K, 4 + 6k, then, (n, 2N) = (3, 2N) = (3, 2N)

- 1. Then from theorem 5.12 (ii), We get $P_N(D_3, D_3) = [3 + 1]/[2(3)] = 2/3.$ If N = 6 + 6K, then (n, 2N) = 1
- (3, 2N) = 3. Then, from theorem 5.12 (ii), We get $P_N(D_3, D_3) = [3 + 3]/[2(3)] = 1$.

Remark. In [10], $P_N(D_3, D_3)$ has been denoted by $P_N(D_3)$. We can obtain all the theorems of [10] from theorem 5.12 (i,ii).

Theorem 5.14. Let D₄ be dihedral group of degree 4. Then,

- (i) $P_N(D_4, D_4) = P_N(D_4) = 5/8$, If N is odd and
- (*ii*) $P_N(D_4, D_4) = P_N(D_4) = 1$ if N is even.

Proof. Let n = 4. If N is odd, then (n, 2N) = 2, (n, N) = 1 and (n, 2) = 2. Then from theorem 5.12(i) and theorem 4.14(i), We get $P_N(D_4, D_4) = P_N(D_4) = 10/16 = 5/8$. If N is even, then (n, 2N) = 4. Then from theorem 5.12 (ii) and theorem 4.14(ii), We get $P_N(D_4, D_4) = P_N(D_4) = 8/8 = 1$.

6. The Subgroups Of Dihedral Group

Definition 6.1. Let d be a positive integer such that $d \mid n$ and k = n/d or kd = n. Let O be the set of odd elements of D_n and $[2t + 1], [2i + 1] \in 0$. We define a relation ~ on O by $[2t + 1] \sim [2i + 1] \Leftrightarrow 2d$ divides $(2t + 1 - 2i - 1) \Leftrightarrow 2t + 1 = 2rd + 2i + 1$, for some $r \in Z$.

Theorem 6.2. The relation ~ defined by definition 6.1 is an equivalence relation on O. If $C_d[2i + 1]$ is the equivalence class by $[2i + 1] \in O$, then,

- (i) $C_d[2i+1] = \{[2rd+2i+1] | r \in Z\} = \{[2rd+2i+1] | 0 \le r < k\},\$
- (ii) $|C_d[2i+1]| = k$, and
- (iii) there are d distinct classes for $0 \le i < d$.

Proof. It is obvious that \sim is an equivalence relation on O.Then \sim decomposes O into disjoint equivalence classes.

(i) Let $C_d[2i+1]$ be the equivalence class by $[2i+1] \in 0$. Then $C_d[2i+1] = \{[2t+1] \in 0 | [2t+1] \ge [2i+1] \ge [2i+1]\}$. Let $[2t+1] \in C_d[2i+1]$, implies $[2t+1] \ge [2i+1]$. Then from definition 6.1, We get 2t+1 = 2rd + 2i + 1, for some $r \in Z$, implies [2t+1] = [2rd + 2i + 1], for some $r \in Z$. Let $r \in Z$. Then 2d divides (2rd + 2i + 1 - 2i - 1). Then from definition 6.1, We get $[2rd + 2i + 1] \ge [2rd + 2i + 2i + 1] \ge [2rd + 2i + 1]$

 $\{[2rd + 2i + 1] | r \in Z\}$. Let $0 \le r_1, r_2 < k, r_1 \ne r_2$, implies, $0 \le 2r_1d, 2r_2d < 2kd, 2r_1d \ne 2r_2d$. Since kd = n, it follows that $0 \le 2r_1d, 2r_2d < 2n, 2r_1d \ne 2r_2d$. Then from lemma 3.6(ii), We get $[2r_1d] \ne [2r_2d]$. Then from lemma 3.19 (iv), We get $[2r_1d + 2i + 1] \ne [2r_2d + 2i + 1]$. Let $r \in Z$. Then by division algorithm We can write $r = qk + r_1, 0 \le r_1 < k$, implies $2rd + 2i + 1 = 2qkd + 2r_1d + 2i + 1 = 2nq + 2r_1d + 2i + 1$. Then from lemma 3.6 (iii), We get, $[2rd + 2i + 1] = [2nq + 2r_1d + 2i + 1] = [2r_1d + 2i + 1], 0 \le r_1 < k$. Then it follows that $C_d[2i + 1] = \{[2rd + 2i + 1] | r \in Z\} = \{[2rd + 2i + 1] | 0 \le r < k\}$ and $|C_d[2i + 1]| = k$.

(ii) It follows from proof of(i).

(iii) Let there be *l* distinct classes. From (ii) it follows that each class has k elements. Then, We get lk = |0|. Then from lemma 3.18 (iv), We get lk = n, implies l = n/k = d. Let $[2t + 1] \in 0$. By division algorithm We can write t = qd + i, $0 \le i < d$, implies 2t + 1 = 2qd + 2i + 1, $0 \le i < d$. Then from definition 6.1, We get $[2t + 1] \sim [2i + 1]$, $0 \le i < d$, implies $C_d[2t + 1] = C_d[2i + 1]$, $0 \le i < d$. Then (iii) follows.

Theorem 6.3. The set of even elements of a subgroup H of D_n is a subgroup of H.

Proof. Let H be a subgroup of D_n . Let T be the set of even elements of H. Then $[0] \in H$, implies $[0] \in T$. Let $[2r], [2t] \in T$. implies $[2r], [2t] \in H$ implies, $[2r], [2t] \in H$. From definition 3.8(i), We get [2r], [2t] =

[2r + 2t] = [2(r + t)] which is even element. Then it follows that [2r]. $[2t] \in T$. Hence *T* is closed and finite. Therefore *T* is a subgroup of *H*.

Theorem 6.4. Let $[2r + 1], [2r] \in D_n$. Then,

- (i) O([2r+1]) =order of [2r+1] = 2, and
- (ii) $O([2r]) = n/(n,r), r \ge 1.$

Proof. (i) From definition 3.8(ii), We get, 1[2r + 1] = [2r + 1], 2[2r + 1] = [2r + 1], [2r + 1] = [-2r - 1 + 2r + 1] = [0], implies O([2r + 1]) = 2.

(ii) Let O([2r]) = m. Then m is the least positive integer such that m[2r] = [0], implies [2mr] = [0] by lemma 3.19(i). Then from definition 3.1, We get 2mr = 2nq for some $q \in Z$, implies m = (nq)/r where qis the least positive integer such that r divides nq. Let p = (n, r). Then We can write n = pl and r = pa where l and a are relatively prime. Then m = (lq)/a where q is the least positive integer such that a divides lq. Then it follows that q = a. Then m = l = n/p = n/(n, r).

Theorem 6.5. Let $[2c] \in D_n$, $1 \le c$ and $H = \{r[2c] | r \in Z\}$. Let k = n/(n, c) or k(n, c) = n. Then H is cyclic subgroup of order k and index 2(n, c) given by $H = \{r[2(n, c)] = [2r(n, c)] | r \in Z\} = \{r[2(n, c)] = [2r(n, c)] | 0 \le r < k\}$, where 2(n, c) is the least positive even integer such that $[2(n, c)] \in H$. **Proof.** Let $[2c] \in D_n$, $1 \le c$ and $H = \{r[2c] | r \in Z\}$. Then it is obvious that H is a cyclic subgroup generated by [2c]. From theorem 6.4(ii), We get O([2c]) = n/(n, c). Let k = n/(n, c) or k(n, c) = n. Then from theorem 6.4 (ii), We get O([2(n, c)] = n/(n, (n, c)) = n/(n, c). Let c = (n, c)a. Then a and k are relatively prime. Then by Euclid division algorithm, there exists integers x and y such that ax + ky = 1, implies, ax = 1 - ky. Let r = k + x. Then from lemma 3.19(i), We get r[2c] = [2rc] = [2(k + x)c] = [2(k + x)(n, c)a] = [2k(n, c)a + 2x(n, c)a] = [2na + 2(n, c)(1 - ky)] = [2na + 2(n, c) - 2(n, c)ky] = [2na + 2(n, c) - 2ny] = [2n(a - y) + 2(n, c)] = [2(n, c)], by lemma 3.6(ii). Then it follows that $[2(n, c)] \in H$. Since O([2c]) = O([2(n, c)]) = k, We get that $H = \{r[2(n, c)] | r \in Z\} = \{r[2(n, c)] | 0 \le r < k\}$, |H| = k, index H = 2n/k = 2(n, c). Since k(n, c) = n, it follows that 2(n, c) is the least positive even integer such that $[2(n, c)] \in H$. From lemma 3.19(i), We get r[2(n, c)] = [2r(n, c)].

Theorem 6.6. Let H be a subgroup of D_n . Let H contain even elements only and 2d be the least positive even integer such that $[2d] \in H$. Then $d \setminus n$. Let k = n/d or kd = n. Then H is a cyclic subgroup of index 2d and order k given by

 $H = \{r[2d] = [2rd] | r \in Z\} = \{r[2d] = [2rd] | 0 \le r < k\}.$

Proof. Let $[2t] \in H$. Then by division algorithm We can write t = rd + i, $0 \le i < d$, implies, 2t - 2rd = 2i, $0 \le i < d$. Now $[2t], [2d] \in H$, implies $[2t], r[2d] \in H$, implies $[2t], [2rd] \in H$, by lemma 3.19(i). Then $[2t].[2rd]^{-1} \in H$. Then from lemma 3.13(i) and definition 3.8 (i), We get $[2t].[2rd]^{-1} = [2t].[-2rd] = [2t - 2rd] \in H$, implies $[2i] \in H$. Since 2d is the least positive even integer such that $[2d] \in H$ and $[2i] \in H$ such that $0 \le 2i < 2d$, it follows that 2i = 0. Then [2t] = [2rd] = r[2d]. Since H is subgroup, so $r[2d] \in H \forall r \in Z$. Therefore, $H = \{r[2d] | r \in Z\}$. Let k = n/(n, d) or k(n, d) = n. Then from theorem 6.5 it follows that H is a cyclic subgroup of index 2(n, d) and order k given by $H = \{r[2(n, d)] = [2r(n, d)] | r \in Z\} = \{r[2(n, d)] = [2r(n, d)] | 0 \le r < k\}$. where 2(n, d) is the least positive even integer such that $[2(n, d)] \in H$.

Therefore 2(n, d) = 2d, implies (n, d) = d, Then it follows that kd = n and $d \setminus n$.

Note. If $H = \{[0]\}$, then 2n is the least positive even integer such that $[2n] \in H$.

Theorem 6.7. Let H be a subgroup of D_n and let H contain both even and odd dements.

Let 2d be the least positive even integer such that $[2d] \in H$. Then d\n. Let k = n/d or kd = n. Then H is a dihedral subgroup of index d and order 2k given by $H = \{r[2d]\}|r \in Z\} \cup C_d[2l+1] = \{[2rd], [2rd+2l+1]|r \in Z\} = \{[2rd], [2rd+2l+1]|0 \le r < k\}.$

Where [2l + 1] is any odd element of *H*. In particular there exists $[2i + 1] \in H$ such that $0 \le i < d$ and $H = \{[2rd], [2rd + 2i + 1] | 0 \le i < k\}$.

Proof. Let *H* be a subgroup of D_n and let *H* contain both even and odd elements. Let *T* be the set of even elements of *H*. Then from theorem 6.3 it follows that *T* is a subgroup of *H*. Then *T* is also a subgroup of D_n . Let 2*d* be the least positive even integer such that $[2d] \in T$. Then from theorem 6.6 it follows that $d \setminus n$. Let k = n/d or kd = n. Then from theorem 6.6 it follows that *T* is a cyclic subgroup of index 2*d* and order *k* and $T = \{r[2d] | r \in Z\} = \{[2rd] | 0 \le r < k\}.$

Let [2l+1] be any odd element of H. Then from theorem 6.2, We get $C_d[2l+1] = \{[2rd+2l+1]|r \in Z\} = \{[2rd+2l+1]|0 \leq r < k\}$ and $|C_d[2l+1]| = k$. Let $[2t+1] \in H$. Then [2l+1]. $[2t+1] \in H$. Then from definition 3.8(ii), We get $[-2l+2t] \in H$, implies $[2t-2l] \in T$, implies [2t-2l] = [2rd] for some $r \in Z$. Then from lemma 3.19(iv), We get [2t+1] = [2rd+2l+1], implies $[2t+1] \in C_d[2l+1]$. Now $[2d], [2l+1] \in H$, implies $[2l+1].r[2d] \in H \forall r \in Z$. Then from lemma 3.19(i) and definition 3.8(i), We get $[2rd+2l+1] \in H \forall r \in Z$. Then it follows that $H = T \cup C_d[2l+1] = [2rd+2l+1]$.

 $\{[2rd]|r \in Z\} \cup C_d[2l+1] = \{[2rd], [2rd+2l+1]|r \in Z\} = \{[2rd], [2rd+2l+1]|0 \le r < k\} \text{ and } |H| = k + k = 2k. \text{ By division algorithm, We can write } l = rd + i, 0 \le i < d, \text{ implies } 2l+1 = 2rd+2i+1 \text{ ord } 1 + 2i+1 \text{$

(i)
$$f([2r]_k, [2t]_k) = f([2r+2t]_k) = [(2r+2t)d]$$

 $= [2rd+2td] = [2rd], [2td] = f([2r]_k)f([2t]_k),$
(ii) $f([2r]_k, [2t+1]_k) = f([-2r+2t+1]_k) = f([2(-r+t)+1]_k)$
 $= [2(-r+t)d+2i+1] = [-2rd+2td+2i+1] = [2rd], [2td+2i+1]$
 $= f([2r]_k)f([2t+1]_k),$

(iii)
$$f([2r+1]_k, [2t]_k) = f([2r+1+2t]_k) = f([2(r+t)+1]_k) = [2(r+t)d + 2i + 1] = [2rd + 2td + 2i + 1] = [2rd + 2i + 1], [2td] = f([2r+1]_k)f([2t]_k),$$

(iv)
$$f([2r+1]_k, [2t+1]_k) = f([-2r+2t]_k) = f([2(-r+t)]_k)$$

= $[2(-r+t)d] = [-2rd - 2i - 1 + 2td + 2i + 1]$
= $[2rd + 2i + 1], [2td + 2i + 1] = f([2r+1]_k)f([2t+1]_k)$

Then it follows that f is homomorphism. Also it is obvious that f is one-one and onto. Then it follows that

 $D_k \cong H$ and hence H is a dihedral subgroup.

Theorem 6.8. Every subgroup of D_n is cyclic or dihedral. A complete listing of all subgroups of D_n is as follows:

(i) For each *d* such that $d \mid n$ and k = n/d or kd = n there exists exactly one cyclic subgroup of index 2*d* and order *k* given by

 $C_k^n = \{r[2d] | r \in Z\} = \{[2rd] | 0 \le r < k\},\$

where 2*d* is the least positive even integer such that $[2d] \in C_k^n$.

(ii) For each *d* such that $d \mid n$ and k = n/d there are exactly *d* dihedral subgroups of index *d* and order 2k given by

 $D_k^n = \{r[2d] | r \in Z\} \cup C_d[2i+1]$

- $= \{ [2rd], [2rd + 2i + 1] | r \in Z \}$
- $= \{ [2rd], [2rd + 2i + 1] | 0 \le r < k \},\$

where 2*d* is the least positive even integer such that $[2d] \in D_k^n$ and [2i + 1] is any odd element of O or D_n . But only *d* subgroups will be obtained for $0 \le i < d$.

Proof. Let *H* be a subgroup of D_n . Since $[0] \in H$ and [0] is even element, so there are only two cases. Either *H* contains only even elements or *H* contains even and odd elements both. Then from theorem 6.6 and theorem 6.7 it follows that *H* is either cyclic or dihedral and *H* will be obtained from (i) and (ii) for some *d* such that $d \mid n$. So all subgroups of D_n will be obtained from (i) and (ii) for different values of *d* such that $d \mid n$.

- (i) Let $d \setminus n$ and k = n/d or kd = n. Let $C_k^n = \{r[2d] | r \in Z\}$. Since $d \setminus n$, implies (n, d) = d and n/(n, d) = n/d = k. Then from theorem 6.5, We get (i).
- (ii) Let $d \setminus n$ and k = n/d or kd = n. Let $T = \{r[2d] | r \in Z\}$. Then form(i) it follows that $T = \{r[2d] = [2rd] | 0 \le r < k\}, |T| = k$ and 2d is the least positive even integer such that $[2d] \in T$. Let $[2i + 1] \in 0$. Then from theorem 6.2, We get $C_d[2i + 1] = \{[2rd + 2i + 1] | r \in Z\} =$ $\{[2rd + 2i + 1] | 0 \le r < k\}$ and $|C_d[2i + 1]| = k$. Let $D_k^n = T \cup C_d[2i + 1] = \{[2rd], [2rd + 2i + 1] | 0 \le r < k\} =$ $\{[2rd], [2rd + 2i + 1] | r \in Z\}$. Then $|D_k^n| = |T| + |C_d[2i + 1]| = k + k = 2k$. Let $[2rd], [2td] \in D_k^n$. Then from definition 3.8 (i). We get [2rd]. $[2td] = [2rd + 2td] = [2(r + t)d] \in D_k^n$. Let $[2rd], [2td + 2i + 1] \in D_k^n$. Then form definition 3.8 (i, ii), We get [2rd]. $[2td + 2i + 1] \in D_k^n$. Let $[2rd + 2i + 1] \in D_k^n$ and [2td + 2i + 1]. $[2rd + 2i + 1] \in D_k^n$. Let $[2rd + 2i + 1] \in D_k^n$. Then from definition 3.8 (ii), We get $[2rd + 2i + 1] \in D_k^n$. Let $[2rd + 2i + 1] \in D_k^n$. It follows that D_k^n is closed and finite subset of D_n . So D_k^n is a subgroup of index d and order 2k. From theorem 6.7 it follows that D_k^n is dihedral. From theorem 6.2, it follows that there are d distinct classes $C_d[2i + 1]$ for $0 \le i < d$. So, We get d distinct dihedral subgroups.

Theorem 6.9. A complete listing of all normal subgroups of D_n is as follows:

(i) For each d such that $d \mid n$ and k = n/d or kd = n there exists exactly one cyclic normal subgroup of index 2d and order k given by

 $C_k^n = \{r[2d] | r \in Z\} = \{[2rd] | 0 \le r < k\}, \text{ where } 2d \text{ is the least positive even integer such that } [2d] \in C_k^n$.

- (ii) If n is odd there exists exactly one dihedral normal subgroup namely D_n itself.
- (iii) If n is even there exists exactly three dihedral normal subgroups given by
 - (a) $D_n = \{ [2r], [2r+1] | 0 \le r < n \}$, of order 2*n*,
 - (b) $D_{n/2}^n = \{[4r], [4r+1] | r \in Z\} = \{[4r], [4r+1] | 0 \le r < n/2\}, \text{ of order } n, \text{ and } n < n/2\}$

(c)
$$D_{n/2}^n = \{[4r], [4r+3] | r \in Z\} = \{[4r], [4r+3] | 0 \le r < n/2\}, \text{ of order } n$$
.

All subgroups of D_n are given by theorem 6.8(i,ii). Let $d \mid n$ and k = n/d or kd = n. Then from **Proof.** theorem 6.8(i), We get $C_k^n = \{r[2d] | r \in Z\} = \{[2rd] | 0 \le r < k\}$. Let $[2rd] \in C_k^n$ and $[2t] \in D_n$. Then using definition 3.8(i) and lemma 3.13(i), We get $[2t] \cdot [2rd] \cdot [2t]^{-1} = [2t + 2rd - 2t] = [2rd] \in C_k^n$. Let $[2t+1] \in D_n$ and $[2rd] \in C_k^n$. Then using definition 3.8 (ii) and lemma 3.13 (ii), We get [2t+1]. [2rd]. $[2t+1]^{-1} = [-2t-1-2rd+2t+1] = [-2rd] = [2(-r)d] \in C_k^n$. Then it follows that C_k^n is normal subgroup of D_n and We get(i). From theorem 6.8(ii), We get $D_k^n =$ $\{[2rd], [2rd + 2i + 1] | r \in Z\} = \{[2rd], [2rd + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r \in Z\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r < k\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r < k\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r < k\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r < k\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r < k\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | r < k\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | 1\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | 1\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | 1\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} = \{[2rd] | 1\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} \cup C_d[2i + 2i + 1] | 0 \le r < k\} \cup C_d[2i + 2i + 1] | 0 \ge r < k\} \cup C_d[2i + 1] |$ 1], $0 \le i < d$ and $|D_k^n| = 2k$. Let $[2t], [2t+1] \in D_n$ and $[2rd], [2rd+2i+1] \in D_k^n$. Then using definition 3.8(i,ii) and lemma 3.13(i,ii), We get [2t]. [2rd]. $[2t]^{-1} = [2t + 2rd - 2t] = [2rd] \in D_k^n$ [2t+1]. [2rd]. $[2t+1]^{-1} = [-2t-1-2rd+2t+1] = [2(-r)d] \in D_k^n$, [2t]. $[2rd+2i+1] = [2(-r)d] \in D_k^n$, [2t]. $[2rd+2i+1] = [2(-r)d] \in D_k^n$, [2t]. 1]. $[2t]^{-1} = [-2t + 2rd + 2i + 1 - 2t] = [-4t + 2rd + 2i + 1]$ and [2t + 1]. [2rd + 2i + 1]. [2t + 1] $1]^{-1} = [4t - 2i + 1 - 2rd]$. D_k^n will be normal subgroup if and only if [-4t + 2rd + 2i + 1], [4t - 2i + 1], [4 $2i + 1 - 2rd \in C_d[2i + 1]$ for every $0 \le t < n$ for every $r \in Z$. Then from theorem 6.1, We get that D_k^n 2i - 1) for every $0 \le t < n$ and for every $r \in Z$, if and only if $2d \setminus 4(-t)$ and $2d \setminus 4(t - i)$ for every $0 \le t < n$, if and only if $d \ge 1$. If n is odd, then $d \ge n$ and $d \ge 1$, implies d = 1. Then $0 \le i < n$ implies $0 \le i < 1$, implies i = 0. Then k = n/d = n/1 = n and $D_k^n = D_n^n =$ d. $\{[2r], [2r+1]|0 \le r < n\} = D_n$ and We get(ii). If n is even, then $d \setminus n$ and $d \setminus 2$, implies d = 1, 2. For d = 1, We get $D_k^n = D_n^n = \{ [2r], [2r+1] | 0 \le r < n \} = D_n$ which is (iii)(a). If d = 2, Then k = n/2and $0 \le i < d$, implies $0 \le i < 2$, implies i = 0, 1. For i = 0,

We get $D_k^n = D_{n/2}^n = \{ [4r], [4r+1] | 0 \le r < n/2 \}$

which is (iii)(b). For i = 1, We get $D_k^n = D_{n/2}^n = \{[4r], [4r+3] | 0 \le r < n/2\}$ which is (iii)(c).

Theorem 6.10. Let $Z(D_n)$ **denote the center of** $D_n (n \ge 3)$. Then,

- (i) $Z(D_n) = \{[0]\}, \text{ if } n \text{ is odd, and }$
- (ii) $Z(D_n) = \{[0], [n]\}, \text{ if } n \text{ is even.}$

Proof. Let $[2t + 1] \in D_n$. Let [2t + 1]. [2] = [2]. [2t + 1].

Then using definition 3.8 (i, ii), lemma 3.19(iv) and definition 3.1, We get [2t + 3] = [2t - 1], implies, [4] = [0], implies $2n\setminus 4$, implies, n = 1,2. So it follows that $[2t + 1] \notin Z(D_n)$ if $n \ge 3$. Let $[2t], [2r] \in D_n$. Then from definition 3.8(i), We get [2t]. [2r] = [2t + 2r] = [2r]. [2t]. Let $[2r + 1] \in D_n$ and [2t]. [2r + 1] = [2r + 1]. [2t]. Then using definition 3.8(i,ii) and lemma 3.19(i,iv), We get [2r + 1 - 2t] = [2t + 2r + 1], implies [4t] = [0], implies 2[2t] = [0]. Then using lemma 4.7, We get [2t] = [2vc], $0 \le v < p$, p = (n, 2) and c = n/p. If n is odd, then p = (n, 2) = 1. Then [2t] = [0]. Then We get (i). If n is even, then p = (n, 2) = 2. Then $[2t] = [2vc], 0 \le v < 2, c = n/2$, implies [2t] = [0]. Then We get (ii).

Theorem 6.11. The commutator subgroup of D_n is given by $D'_n = \{r[2(n,2)] | r \in Z\} = \{[2r(n,2)] | 0 \le r < n/(n,2)\}.$

Proof. Let $[2t], [2t+1], [2r], [2r+1] \in D_n$. Then using definition 3.8(i,ii) and lemma 3.13(i,ii), We get $[2t], [2t]^{-1}, [2t]^{-1} = [0], [2t], [2r+1], [2t]^{-1}, [2r+1]^{-1}$

= $[0], [2r+1], [2t], [2r+1]^{-1}, [2t]^{-1} = [-4t]$ and $[2t+1], [2r+1], [2t+1]^{-1}, [2r+1]^{-1} = [4(r-t)]$. t)]. Since $[2t], [2r] \in D_n$, $\forall t, r \in Z$. So, if *H* is the set of all commutators of D_n , then $H = \{[0], [-4t], [4(r-t)] | r, t \in Z\}$. Then it follows that $H = \{r[4] | r \in Z\} = \{r[2(2)] | r \in Z\}$. Then from theorem 6.5, it follows that *H* is a cyclic subgroup of index 2(n, 2) and order n/(n, 2) given by

 $H = \{r[2(n,2)] | r \in Z\} = \{[2r(n,2)] | 0 \le r < n/(n,2)\}.$

Since the commutator subgroup D_n is the subgroup generated by the commutators. Therefore $D'_n = H$.

Theorem 6.12. Let k be a positive integer and $H = \{[2t] \in D_n | k[2t] = [0]\}$. Then H is a cyclic subgroup of order (n, k) and index (2n) / (n, k) given by

 $H = \{r[2c] | r \in \mathbb{Z}, \ c = n/(n,k)\} = \{[2rc] | 0 \le r < (n,k), \ c = n/(n,k)\}.$

Proof. Let $H = \{[2t] \in D_n | k[2t] = [0]\}$. Then using lemma 4.7, We get

 $H = \{ [2rc] = r[2c] | 0 \le r < (n,k), c = n/(n,k) \}.$ Since c(n,k) = n, So from theorem 6.8 (i), it follows that *H* is a cyclic subgroup of index 2c = (2n)/(n,k) and order (n,k).

Theorem 6.13. Let k be a positive integer . Let kE

 $=\{k[2t]|[2t] \in E\}$ and $E_k = \{[2t] \in E|k[2t], [2r+1] = [2r+1], k[2t], \forall [2r+1] \in 0\}$. Then,

(i) kE is a cyclic subgroup of E given by

 $kE = \{r[2(n,k)] | r \in Z\} = \{[2r(n,k)] | 0 \le r < n/(n,k)\},\$

|kE| = n/(n,k),

(ii) E_k is a cyclic subgroup of E given by

$$E_k = \{r[2c] | 0 \le r < (n, 2k), \ c = n / (n, 2k) \},\$$

$$|E_k| = (n, 2k),$$

(iii) kE_k is a cyclic subgroup of kE given by

$$kE_k = \{r[2kc]|0 \le r < (n, 2k)/(n, k), \ c = n(n, k)/(n, 2k)\},\$$

$$|kE_k| = (n, 2k)/(n, k)$$

(iv)
$$|C_k^1(E \times 0)| = |C_1^k(0 \times E)| = |E_k \times 0| = |E_k||0| = (n, 2k)n$$
, and

(v)
$$|C(kE \times 0)| = |C(0 \times kE)| = |(kE_k \times 0)| = |kE_k||0| = (n, 2k)n / (n, k).$$

Proof. Let E be the set of even elements of D_n .

Then from lemma 3.18(i) and lemma 3.19 (i), We get $E = \{[2r] | 0 \le r < n\} = \{r[2] | r \in Z\}$ and |E| = n.

From theorem 6.5, it follows that E is a cyclic subgroup of D_n . Let k be a positive integer and

 $kE = \{k [2t] | [2t] \in E\}$. Then using theorem 3.19 (i), We get $kE = \{t[2k] | [2t] \in E \text{ or } t \in Z\}$ and $kE \subseteq E$. Then from theorem 6.5, it follows that kE is a cyclic subgroup and

$$kE = \{t[2(n,k)] | t \in Z\} = \{[2t(n,k)] | 0 \le t < n/(n,k)\}, |kE| = n/(n,k) \text{ which is (i)}.$$

Let $E_k = \{[2t] \in E | k[2t], [2r+1] = [2r+1], k[2t] \forall [2r+1] \in 0\}$. Then using definition 3.8(i,ii) and lemma 3.19 (i, iv), We get $E_k = \{[2t] \in E | 2k[2t] = [0]\}$. Then using theorem 6.12, it follows that E_k is a cyclic subgroup of E and $E_k = \{r [2c] | 0 \le r < (n, 2k), c = n/(n, 2k)\}, |E_k| = (n, 2k)$ which is (ii). Then using lemma 3.19(i), We get

$$kE_k = \{k[2rc] | 0 \le r < (n, 2k), \ c = n/(n, 2k)\} = \{r[2kc] | 0 \le r < (n, 2k) \ or \ r \in Z, \ c = n/(n, 2k)\}.$$

Then clearly $kE_k \subseteq kE$. Now (n, kc) = (n, kn/(n, 2k)) = (n(n, 2k) / (n, 2k), kn/(n, 2k))

 $= \{n / (n, 2k)\}((n, 2k), k) = \{n/(n, 2k)\}(n, k) = n (n, k) / (n, 2k), \text{ implies, } n/(n, kc) = (n, 2k) / (n, k).$ Then from theorem 6.5, it follows that kE_k is a cyclic subgroup of kE and $kE_k = \{r [2n (n, k) / (n, 2k)] | 0 \le r < (n, 2k) / (n, k)\},$ $|kE_k| = (n, 2k)/(n, k)$ which is (iii). Using definition 4.2, lemma 4.5, (ii), |0| = n and definition of E_k , We get (iv). Using definition 5.2, (iii), definition of kE, definition of kE_k and |0| = n, We get (v).

Conclusion

Dihedral group D_n of degree n has a new representation as a group of residue classes. This new representation will help us to study any property of dihedral groups. The (N, M)-th commutativity degree $P_N^M(D_n)$ and the relative (N, M)-th commutativity degree $P_N^M(D_n, D_n)$ for all N, M and n have been obtained. Also all subgroups, all normal subgroups, the center and commutator subgroup have been obtained.

Acknowledgement

Dr. Subhash Chandra Singh

K.S. Inter College, District : Ballia,

State : Uttar Pradesh,

Country : India, PIN: 277001

Gmail: drsubhash4321@gmail.com

References

- [1] A. Erfanian, R. Rezaei and P. Lescot, On the relative commutativity degree of subgroup of a finite group, Communications in Algebra ® 35(2007), 4183-4197.
- B.Azizi and H.Dostie, Certain numerical results in non-associative structures, Mathematical sciences (2019) 13:27-32. https/doi.org/10.1007/540096-018-0274-0.
- [3] D.S.Dummit and R.M. Foote, Abstract Algebra, John Wiley, N.Y. 2003.
- [4] K.Conrad, Dihedral groups, course Hero, Access 27 January 2020. Available online at : https://www.coursehero.com/file/87268627/dihedral 2pdf/.
- [5] M.Abdul Hamid, The probability that two elements commute in dihedral groups, "Under graduate Project Report, Universiti Teknology Malaysia(2010)."
- [6] M.M. Ali and N.H. Sarmin, On some problems in group theory of probabilistic nature, Menemui Matematic (Discovering Mathematics) 32(2), 35-41(2010), ISS N 2231-7023.

- [7] N.H. Sarmin and M.S. Mohammad, "The probability that two elements commute in some
 2-generator 2-group of nilpotency class 2, " Technical Report of Department of
 Mathematics, Universiti Teknology Malaysia LT/M Bil. 3/2006.
- [8] P. Erodos and P.Turan, On some problem of statistical group theory, Acta Math. Acad. Sci. Hungaricae 19, 413-435 (1968).
- [9] W.H. Gustofson, what is the probability that two group elements commute? Amer, Math. Montholy 80, 1031-1304 (1973).
- Z. Yahya, N.M.M. Ali, N.H. Sarmin and F.N.A.Manaf, The nth commutativity degree of some dihedral groups, Menemui Matematic (Discovering Mathematics) 34, 7-14(2012).
 DOI : 10.1063/1.4801214.

