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Abstract
The aim of this paper is to introduce a new representation of dihedral group Dn of degree n as a
group of residue classes and study its properties. We find the (N,M)-th Commutativity degree P} (D,,) for all
positive integers N, M and n. P (D,) is the probability of a random pair (x,y) of D, X D, so that

xNyM = yMxN . Let DX = {aX|a € D,;} for a positive integer K. Further We find the relative (N,M)-th
commutativity degree R’ (D,,D,)=P(D},D}")for all positive integers N, M and n. Py (Dy, D) is the
probability that a random element of DM commutes with a random element of D}'. Finally We find all
subgroups, all normal subgroups, the center and the commutator subgroup of D,,.

1. Introduction

Conrad [4] defined dihedral group Dy as a result of reflection and rotation operations. All the properties
of Dn are proven by geometry approach. In this paper, We represent Dy as a group of residue classes. Then it
becomes very easy to study any property of Dn. Erodos and Turan [8], and, Gustofson [9] introduced the concept
of the commutativity degree P(G). P(G) is the probability that a random element of G commutes with a random

element of G. Sarmin and Mohamad [7] extended the concept of the commutativity degree P(G) as the N-th
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commutativity degree Py (G) for a positive integer N. Py (G) is the probability of a random pair (x,y) of GXG
so that xy = yx™. Ali and Sarmin [6], and, Azizi and Dostie [2] defined the same Py (G). In this paper, We
extend the concept of the N-th commutativity degree Py (G) as the (N,M)-th commutativity degree P} (G) for
positive integers N and M. P} (G) is the probability of a random pair (x,y) of GXG so that x"y" = y"x".
Sarmin and Mohamad [7], and, Ali and Sarmin [6] obtained Py (D,) forall N. Abdul Hamid [5] obtained P(Dn),
and, Azizi and Dostie [2] obtained Pn(Dn), for all N and n. In this paper, We find P (D,) for all N, M and n.

Erfanian and Rezaei [1] introduced the concept of the relative commutativity degree P(H, G) of a subgroup H
of a finite group G. P(H,G) is the probability that a random element of H commutes with a random element of
G. Let GV ={a"|a € G} for a positive integer N. Yahya et all [10] used same Py (G) defined by Sarmin and
Mohamad [7]. They [10] expressed Py (G) by the equation Py (G) = |{(x,y) € G X G|xNy = yxN}|/(|G|?).
But to prove P, (D,) they [10] did not use this equation. Their [10] proof for P, (D,) can be obtained by using
the equation Py (G) = |{(x,y) € G x G|xy = yx}|/(IG"||G|) which is the relative commutativity degree

P(G",G). We define P(G",G)as the relative N-th commutativity degree and denote it by Py(G,G). Yahya
et all [10] obtained P, (Dn, Dn) for all N and for some dihedral groups D, upto degree n=12. In this paper
We extend the concept of the relative N-th commutativity degree P, (G,G) as the relative (N, M) — th
commutativity degree B (G,G)= P(GN,GM) for Positive integers N and M . P’ (G,G) is the probability

that a random element of G" commutes with a random element of G" . In this paper We find P} (D, D,,) for
all N, M and n. Then P{(D,) and P{{(D,,D,) are improvements of Py (D,)(or P(D,)) and
Py (D, D, )(or P(Dy,)) respectively. Finally we find all subgroups, all normal subgroups, the center and the

commutator subgroup of D,, .

2. Preliminaries
Definition 2.1 [4,3]. Dihedral group Dy for n > 3 is defined as the rigid motions taking a regular n-gon back
to itself, with operation being composition and obtained Dy, as following :

(i) D,={1,xx%.... X"y, yx, yx? , yx™,

JETIR2210372 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | d460


http://www.jetir.org/

© 2022 JETIR October 2022, Volume 9, Issue 10 www jetir.org (ISSN-2349-5162)

1

(i) y?2=1,x"=1=x° xy=yx™!, x'y =yx~tand |D,| = 2n.

Definition 2.2 [8]. The commutativity degree P(G) of a finite group G is defined by

P(G) =l{(x,y) € G x Glxy = yx}|/(|G|?).

Definition 2.3 [2,6,7]. The N-th commutativity degree Pn(G) of a finite group G is defined by

Pn(G) = [{(x,¥) € G x Glx"y = yx"}|/(1G|?).

Definition 2.4 [1]. The relative commutativity degree P(H,G) of a subgroup H of a finite group G is defined
by P(H,G) = [{(x,y) € H x Glxy = yx}|/(IH||G]).

Definition 2.5 [10]. The N-th commutativity degree Pn(G) in [10] can be replaced by the relative N-th
commutativity degree Py(G,G) = P(GV,G).Py(G, G) is the probability that a random element of GN
commutes with a random element of G given by

Py(G,G) = P(G",6) = [{(x,y) € G" x Glxy = yx}|/(IGV]IGI).

Definition 2.6 [3]. A relation ~ on Z is called an equivalence relation on Z if

(i) a~ a V(for every)a € Z, (ii) a~b = b~aand (iii) a~b and b~c = a~c.

Theorem 2.7 [3]. An equivalence relativon ~ on a set Z decomposes Z into disjoint equivalence classes and

[a] = [b] if and only if a~b. Where [X] denotes the equivalence class by x € Z.

3. Representation Of Dihedral Group
As A Group Of Residue Classes

Definition 3.1. Let Z be the set of integers and 2n be a positive integer. Let a, b € Z. We define a relation
~on Zhy

a~b & 2n divides (a — b) & a — b =2nq forsome q € Z.

Then ~ is called the relation of congruent modulo 2n and We write a = b(mod 2n).

Lemma 3.2. The relation ~ of congruent modulo 2n is an equivalence relation on Z.

Proof. Leta, b, c € Z. We can write a—a = 2n(0). Then from definition 3.1, We get a~a. Let a~b. Then from
definition 3.1, We get a — b = 2nq for some g € Z, implies b — a = 2n(—q), implies b~a. Let a~b and b~c.
Then from definition 3.1, We get a — b = 2nq, and b — c = 2nq, for some q;,q, € Z, impliessa —b + b —
¢ = 2nq, + 2nq,, implies a — ¢ = 2n(q; + q;), implies a~c. It follows that ~ is an equivalence relation on

Z.
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Definition 3.3. Let a € z and ~ be the relation of congruent modulo 2n. Let
[a] = {x € z|x~a}.
Then [a] is called equivalence class by a. [a] is also called residue class modulo 2n by a. We can also denote
residue class modulo 2n by [a],.
Lemma 3.4. The relation ~ of congruent modulo 2n On Z decomposes Z into disjoint residue classes.
Proof. The proof follows from lemma 3.2, definition 3.3 and the fact that an equivalence relation decomposes
a set into disjoint equivalence classes.
Lemma 3.5. Leta, b € Z. Let [a] and [b] be the residue classes modulo 2n. Then,
[a] = [b] & 2n divides (a — b) & a — b = 2nq forsome q € Z.
Proof. Leta,b € Z.Since the relation ~ of congruent modulo 2n is an equivalence relation so [a] = [b] &
a~b. Then the proof follows from definition 3.1.
Lemma 3.6. Let ~ be the relation of congruent modulo 2n on Z. Then,
(1) a € Z = [a] =[r], forsome 0 < r < 2n,
(i) 0<rs<2n r+s=[r]#|s],
(iii) forall k,a € Z, [2kn + a] = [a] = [r] € Z,,, forsome 0 < r < 2n, and
(iv)  forall k, [2kn] =[2n] =[0].
Proof.
Q) Let a € Z. Then by division algorithm, We get a = 2nq + r for some q € Z and 0 < r < 2n,
implies a — r = 2nq. Then from lemma 3.5, We get [a] = [r].
(i) Let0 <r,s <2n,r # s, implies 0 < |r — s| < 2n, implies 2n does not divide r — s. Then from
lemma 3.5, We get [r] # [s].
(iii)  We can write (2kn + a) — a = 2kn. Then from lemma 3.5, We get [2kn + a] = [a]. Then proof
follows from lemma 3.6 (i).
(iv)  The proof follows from lemma 3.5.
Lemma 3.7. Let Z,, denote the set of residue classes modulo 2n. Then,
Zyn ={[r]|0 <r < 2n}={[2r],[2r + 1]|0 < r <n}and |Z;,| = 2n.

Proof. The proof follows from lemma 3.6 (i, ii).
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Definition 3.8. Let [r], [s] € Z,,. We define an operation *." On Z2n by

0) [r].[s] = [r + s], if sis even, and

(i) [r].[s]=[-r+s]=[2n—1r+s],if sis odd.

Lemma 3.9. The binary operation ‘." on Z», defined by definition 3.8 (i, ii) is well defined.

Proof. Let a;,a,, by b, € Z. Let [a,] = [a,] and [b;] = [b,]. Then from lemma 3.5, We get a; — a, = 2nq;,
and b, — b, = 2nq, for some q,q, € Z, implies (a; + b;) — (a, +b;) = 2n(q; +q,) and (—a; +
b)) — (—a, +b,) = 2n(q, — q1), b1 and by both are even or both are odd, implies [a, + b;] = [a, + b,]
and [—a, + b;] = [—a, + b,], b1 and bz both are even or both are odd. Then from definition 3.8 (i,ii), We get

[a1].[b1] = [a2]. [b2]. From lemma 3.6(iii), We get [-r + s] = [2n — r + s].

Lemma 3.10. Zanis closed under *’ that is [r], [s] € Z5,, = [r].[s] € Z,,, V [r],[s] € Z,,

Proof . The proof follows from lemma 3.6 (i, iii) and definition 3.8 (i, ii).

Lemma 3.11. Z, is associative under *” Thatis [r]. ([s]. [t]) = ([r].[sD.[t], VIr], [s], [t] € Z5,.

Proof. Lets be even and t be even. Then from definition 3.8 (i), We get [+]. ([s]. [t]) = [r]. (Is + t]) = [r +
s+t] = [r+s].[t] = (7] [sD. [£].

Let s be even and t be odd. Then from definition 3.8 (ii), We get [r]. ([s]. [t]) = [r].[-s+t] = [-r—s +
t]=[r+sl.[] = ([r]-[s]-[¢]:

Let s be odd and t be even. Then from definition 3.8 (i, ii), We get [r]. ([s]. [t]) = [r].[s + t] = [-7 + s +
t] = [-r +s].[t] = ([r]. [sD.[t].

Let s be odd and t be odd. Then from definition 3.8 (i, ii), We get [r]. ([s]. [t]) = [r].[-s + t] = [r —s + t] =
[=r+s].[t] = ([r]- [sD. [t].

Lemma 3.12. [0] is identity of Zon under 7’ Thatis [r].[0] = [0].[r] = [r],V[r] € Z;,.

Proof. Let [r] € Z,,. if r is even, then from definition 3.8(i), We get [r].[0] = [r+ 0] =[r]=[0+ 7] =
[0]. [r]. If r is odd, then from definition 3.8 (i, ii), We get [r].[0] = [r + 0] = [r] = [-0 +r] = [0]. [r].
Lemma 3.13. Let [r] € Z,,. Then inverse of [r] under <’ is given by

(i) [r]7'=[-r]=[2n—7], ifriseven, and

(iiy [r]7t=I[r], ifrisodd.
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Proof. Let [r] € Zan. If ris even, then from definition 3.8 (i), We get [r].[-r] =[r—r]=[0] = [-r+71] =
[—7].[r], implies [r]~* = [—r]. If r is odd, then from definition 3.8(ii), We get [r].[r] = [-r + ] = [0],

implies [r]~! = [r]. Also from lemma 3.6(iii), We get [-7] = [2n — 7].

Lemma 3.14. Z,, is not commutative for n > 3 under *’.

Proof. Let [1],[2] € Z,,. Then from definition 3.8 (i, ii), We get [1].[2] =[1+ 2] =[3] and [2].[1] =
[-2+ 1] =[-1] = [2n — 1], by lemma 3.6 (iii). If n > 3,then2n—1# 3 and 0 < 2n — 1,3 < 2n. Then

from lemma 3.6(ii), We get [3] # [2n — 1]. Then it follows that [1].[2] # [2].[1].

Theorem 3.15. The set Z>n of residue classes modulo 2n forms a group of order 2n under .’ Further Zn is

non-abelian for n > 3.

Proof. The proof follows from lemma 3.7, definition 3.8 and lemma (3.9, 3.10, 3.11, 3.12, 3.13, 3.14).

Theorem 3.16. The dihedral group D, of degree n has a new representation as a group of residue classes

modulo 2n given by

D, =Z,, ={[r]|0 <r < 2n} = {[2r],[2r + 1]|0 < r < n} under * defined by definition 3.8 (i, ii).

Proof. Let Dy be dihedral group of degree n defined by definition 2.1 [3,4]. We define a mapping f: Z, — Dy,
from Z,,, into D,, by f([2r]) = x"and f([2r + 1]) = yx*, where r =0,1,2 ..., (n-1). Let [I], [m] € Z,,.

Let I = 2r and m = 2¢ + 1. Then from definition 2.1 (i, ii), definition 3.8 (ii) and definition of f, We get
fAUImD = f2rl.[2¢ +1] ) =f(-2r+2t+1D=f(2(-r+D+1]) = yx 7" =yx'x7" =
xTyxt = f([2rDf([2t + 1D = F{DSf ([mD.

Let | = 2r and m = 2¢. Then from definition 3.8 (i) and definition of f, We get £([1]. [m]) = f([2r].[2t]) =
f2r+2th) = f([2(r + O =x""" =x"x" = f([2rDf ([2¢]) = fFUDSf(mD.

Let | = 2r + 1 and m = 2¢. Then from definition 3.8 (i) and definition of f, We get £([I].[m]) = f([2r +
1.2t =f(2r+1+2t]) = f([2(r+t) +1]) = yx"+ = yx"xt

=f([2r +1Df(2tD) = fFD S ([mD.
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Letl = 2r + 1 and m = 2t + 1. Then from definition 2.1 (ii), definition 3.8 (ii) and definition of f, We get
fAl.[mD) = f(2r+1].[2t+1]) = f([-2r+2t]) = (2(-r+)])=xT"=xTxt=xT".1.xt =
xTy?xt =xTTyyxt = yxTyxt = f([2r + 1IDf([2t + 1D = FIDf((m]).

It follows that f is a homomorphism. From definition 2.1(i,ii), lemma 3.7 and definition of £, it follows that f
is one-one and onto. Hence We get Z,,, = D,,. Then the proof follows from lemma 3.7 and theorem 3.15.
Definition 3.17. Let Dy be dihedral group of degree n given by theorem 3.16. Then [r] € D,, will be called even
or odd element of D,, according as r is even or odd.

Lemma 3.18. Let E and O be defined by

(i) E={[2r]|0 <r < n},and

(i) O={[2r +1]|0 <r <nj}.

Then E and O are sets of even and odd elements of D, and

(i) D,=EVUO0,ENO0 =0 =null,

(iv) |E|=n, |0] =nand|D,| = 2n.

Proof. The proof follows from theorem 3.16.

Lemma 3.19. Let Dy be dihedral group of degree n and [s], [2r], [2r + 1], [l] € D,,. Then,

(i) K[2r] = [K(2r)], for any positive integer K,

(i) L[2r + 1] =[0], if L is even,

(i) L[2r+ 1] =[2r +1], if Lis Odd, and

(iv) [sl=[leI[s—1=]0]

where N[r] denote the N-th power of [r] € D,,. That is N[r] = [r].

Proof. (i) From definition 3.8 (i), We get, 1[2r] = [2r], 2[2r] = [2r].[2r] = [2r + 2r] = [2(27)],3[(2r)] =
2[2r].[2r] = [2(2r)].[2r] = [2(2r) + 2r] = [3(2r)]. Continuing, We get, K[2r] = [K(2r)].

(i)  Let L beeven. Then L = 2q for some g € Z. Then from definition 3.8 (ii) and lemma 3.19(i), We get,
L[2r + 1] = 2q[2r + 1] = q([2r + 1].[2r + 1]) = q[-2r — 1 + 2r + 1] = q[0] = [q(0)] = [0].

(ili) Let L be odd. Then L = 2g+1 for some q € Z.

Then from lemma 3.19(ii) and definition 3.8 (ii), We get, L[2r + 1] = (2q + 1)[2r + 1] =

2q[2r +1].[2r + 1] = [0].[2r + 1] = [0 + 2r + 1] = [2r + 1].

(iv) Using lemma 3.5 and lemma 3.6 (iv), We get,
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[s]=[l] ®s—1=2nq & [s—1] =[2nq] = [0].
4. The (N,M)-th Commutativity Degree Of Dihedral Groups
Definition 4.1. We define the (N,M)-th commutativity degree PN (G) of a finite group G by
PY(G) = [{(x,y) € G x Glx"y™ = yMx"}|/(|G?),
for positive integers N and M.
Definition 4.2. The (N, M)-th commutativity set C}f(4 x B) of AxB subset of D,, X D,, is defined by
CN(Ax B) = {([r],[s]) € Ax B|N[r]. M[s] = M[s]. N[r]},
where We define L[r]=[r]* for any integer L.
Lemma 4.3. Let Dn be dihedral group of degree n. Then,
PY(D,) = [|CN(E x E)|+|CN (E x 0)| + |C¥ (0 x E)| + |C) (0 x 0)|]/(4n?).
Proof. From definition (4.1, 4.2), for G = D,, and |D,,| = 2n, We get,
PY (Dy) = |[{([r], [s]) € Dy, X Dp|N[r]. M[s] = M([s]. N[r]}|/(4n?), and
CN (Dy X Dy) = {([r], [s]) € Dy X Dy|N[r]. M[s] = M[s]. N[r]}.
Then, We get, PY(D,,) = |CN(D,, X D,)|/(4n?). From lemma 3.18(jii, iv), We get D, x D, = (EX E) U
(Ex0)U(0xE)uU (0x0), where any two of EXE, Ex 0,0 X E and O x O are disjoint. Then using
definition 4.2, We get, |CN'(D, % Dp)| = |CN'(E X E)| + |CX'(E x 0)| + |CX'(0 x E)|+|CN' (O x 0)|. Then We
get lemma 4.3.
Lemma4.4. Let D, be dihedral group of degree n. Then,
(i)  Py(Dn) = Py(Dy), and
(ii)  P{(Dn) = P(Dy).
Proof . The proof follows from definition (2.2, 2.3, 4.1) for G = Dx.
Lemma45. |Ck(Ax B)|=|cK(B x A)|, forany L and K.
Proof. From definition 4.2, We get, Ck(A x B) = {([r],[s]) € A X B|K|[r].L[s] = L[s].K[r]} and
cK(B x A) ={([s],[r]) € B x A|L[s].K[r] = K[r].L[s]}. Then it follows that ([r],[s]) € C:(A x B) &
([s],[r]) € CK(B x A), implies |Ck(A x B)| = |CKX(B x A)|.
Lemma 4.6. Let Dy be dihedral group of degree n. Then,

(i) |CE(Ex0)|=|cKk(OxE)|=|CEE x0)| =|cK(0xE)|,if Lisoddand K is any integer,
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(i) |CE(0x0)| =|cK(0x0)|=|ci(0x0)|, if Land K both are odd,

(iii) |CE(Ex0)| =|CK(0 xE)| =|CEt(0 x0)| =|CK(0 x 0)| =n?,if Lisevenand K is any integer, and

(iv) |CE(E x E)| =n?,if L and K are any positive integer.

Proof.

(i)  From definition 4.2, We get, CX(E x 0) = {([r],[s]) € E x O|K[r].L[s] = L[s].K[r]}
and CL(E x 0) = {([r],[s]) € E x O|K[r].[s] = [s].K[r]}. Let L be odd. Then from lemma 3.19 (iii),
We get, L[s] = [s]. Then it follows that Ck(E x 0) = C#(E x 0), implies |CE(E x 0)| = |CA(E x
0)|. Then using lemma 4.5, We get lemma 4.6 (i).

(i)  From definition 4.2, We get C£(0 x 0) = {([r],[s]) € O X O|K[r].L[s] = L[s].K[r]} and
Ci(0 x0) = {([r],[s]) € 0 x O]|[r].[s] = [s].[r]}. If Land K both are odd, then from lemma 3.19 (iii),
We get L[s] = [s] and K[r] = [r]. Then it follows that
CL(0 x 0) = C{(0 x 0),implies |CE(0 x 0)| = |CL(0 x 0)]. Then, using lemma 4.5, We get
lemma 4.6 (ii).

(iii)  From definition 4.2, We get CX(E x 0) = {([r],[s]) € E X O|K|[r].L[s] = L[s].K[r]} and
CE(0 x 0) = {([r],[s]) € 0 x O|K[r].L[s] = L[s]. K[r]}. If L is even, then from Lemma 3.19 (ii) , We
get L[s] = [0]. Then from lemma 3.12, We get K[r].L[s] = L[s].K[r], VY [r] € D,,V [s] € O. Then it
follows that,

CLEx0)=Ex0,C5(0%x0)=0Xx0.
Then from lemma 3.18 (iv), We get |CX(E x 0)| = |E||0]| = n.n =n? and |CE(0 x 0)| = |0]|0| =
n.n = n?. Then from lemma 4.5, We get lemma 4.6 (iii).

(iv)  From definition 4.2, We get C5(E x E) = {([r],[s]) € E x E|K[r].L[s] = L[s].K[r]}. Since [r] and [s]
are even, so from 3.19 (i), it follows that K[r] and L[s] are even. From definition 3.8(i), We get
K[r].L[s] = [Kr].[Ls] = [Kr + Ls] = [Ls + Kr] = [Ls]. [Kr]
= L[s].K[r],V [r],[s] € E. Then It follows that |C:(E x E)| = |E X E| = |E|.|E| = n? using lemma
3.18 (iv).

Lemma4.7. If Kisany positive integer and [2t] € D,,, then K[2t] = [0] has p = (n, K) number of solutions

as[2t] = [2vc], 0 <v<p,c=n/p.
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Proof. Let p = greatest common divisor of n and K = (n, K). Then n =pc, K=pd, (d, c) = 1. Let [2t] € D,, and
K[2t] = [0]. Let 0 < 2t < 2n. Then, from lemma 3.19(i), We get [2Kt] = [0]. Then from lemma 3.5, We get
K(2t) = 2rn, for some r, 0 < 2t < 2n, impliest = rn/K, K\rn(K divides rn), 0 < 2rn/K < 2n, implies,
t =rpc /pd, pd\rpc, 0 < 2rpc/pd < 2pc, c =n/p, p = (N, K),(d,c) =1, impliest =rc/d, d\r,0 <
r/d <p,c=n/p, p=nK), impliest =vdc/d,r =vd,0 <vd/d <p,c =n/p,p = n,K),impliest =
ve,0 Sv<pc=n/p,p=mK), implies [2t] = [2vc],0 < v <p,c =n/p,t =vc,p = (n,K).Now 0 <
v<p,c=n/pimplies 0 < 2vc < 2pc,0 < v <p,c=n/p,implies0 <2vc <2nfor 0 <v<p. Then
from lemma 3.6 (ii), it follows that [2t] = [2vc], for v = 0,1,2..., (p-1), are p = (n, K) different elements of Dn.
Let t be any integer. Then by division algorithm We get 2t = 2nq + 21,0 < 21 < 2n. Then from lemma 3.6(iii),
We get [2t] = [2nqg + 21] = [21],0 < 21 < 2n, implies K[2t] = K[2]] and K[2t] = [0] & K][2l] = [0],0 <
21 < n. Then by previous case We get the theorem.

Lemma4.8. LetK be any integer. Then |CA(E X 0)| = |CK(0 x E)| = (n, 2K)n.

Proof. From definition 4.2, We get CHE x0) =
{([2t],[2r + 1]) € E x O|K|[2t].[2r + 1] = [2r + 1].K[2t]}. Then from definition 3.8 (i,ii) and lemma 3.19
(i, iv), We get CE(E x 0) = {([2t],[2r + 1]) € E x 0|2K[2t] = [0]}. Then from lemma 3.18(iv) and lemma
47, We get CR(Ex0)={[2vc],[2r+1D|I0<v<p, 0<r<n, p=(n2K),c=n/p}, implies

|CL(E x 0)| = pn = (n, 2K)n. From lemma 4.5, We get |CX(0 x E)| = |CA(E x 0)| = (n, 2K)n.

Lemma4.9. [C}(0 x 0)| = (n,2)n.

Proof. From definition 4.2, We get Ci(0x0)=
{([2t +1],[2r +1]) € 0 x O|[2t + 1].[2r + 1] = [2r + 1].[2t + 1]}. Then from definition 3.8 (ii) and
lemma 3.19 (iv), We get C1(0 x 0) = {([2t + 1],[2r + 1]) € O X 0]2[2(t — r)] = [0]}. Then from lemma
3.18 (iv), lemma 3.19(iv) and lemma 4.7, We get C;{ (0 x 0) = {([2t + 1], [2r + 1]D]|[2t — 2r] = [2vc], 0 <
v<p0<r<n c=n/p, p=Mn2)} =
{(Ruc+2r+1],2r+1DI0<v<p, 0<r<n,c=n/p,p=Mn2)}

implies |C}(0 x 0)| = pn = (n, 2)n.

Theorem 4.10. If N and M both are odd positive integers, then,

P (D) = [n+ (n,2N) + (n,2M) + (n,2)]/[4n].
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Proof. Let N and M both be odd. Then from lemma 4.6 (i, ii, iv), lemma 4.8 and lemma 4.9, We get
|CN (E X 0)] = |Cy(E x 0)] = (n, 2N)n, |G/ (0 x E)| = |C}'(0 X E)| = (n,2M)n, |C{/ (0 x 0)| =
IC1(0 x0)| = (n,2)n and |CA(E x E)| =n? Then from lemma 4.3, We get PY(D,) =[n®+
(n, 2N)n + (n, 2M)n + (n, 2)n]/[4n°]=[n + (n, 2N) + (n, 2M) + (n, 2)]/[4n].

Theorem 4.11. If N is even and M is odd, then,

P (D,) = [3n+ (n,2N)]/[4n].

Proof. Let N be even and M be odd. Then from lemma 4.6 (i,ii,iii) and lemma 4.8, We get,

ICN (E x 0)] = |Cy(E x 0)] = (n,2N)n, |CY (0 X E)| = n?,|C{ (0 X 0)| = n?

and |CY(E x E)| = n?. Then from lemma 4.3, We get Py (D,) = [n? + (n, 2N)n + n? + n?]/[4n?] =
[3n + (n,2N)]/(4n).

Theorem 4.12. If N is odd and M is even, then,

Py (Dp) = [3n+ (n,2M)]/[4n].

Proof. Let N be odd and M be even. Then from lemma 4.6 (i, iii, iv) and lemma 4.8, We get

ICM(E x 0)] = nZ,|CM(0 x E)| = |CM(0 x E)| = (n, 2M)n, |CM (0 % 0)| = n? and

|CY(E x E)| = n?. Then from lemma 4.3, We get

PY(D,) = [n? + n? + (n,2M)n + n?|/[4n?] = [3n + (n, 2M)]/[4n].

Theorem 4.13. If N and M both are even, then, P} (D,) = 1.

Proof. Let N and M both be even. Then from lemma 4.6 (iii, iv), We get |C}(E x 0)| = n?,
Y (0 x E)] =n?, |CM (0 x 0)] =n? and |C} (E x E)| = n?. Then from lemma 4.3 We get P¥(D,) =
[n? + n? + n? + n?]/[4n?] =1.

Theorem 4.14. The N-th commutativity degree of dihedral group of degree n is given by

(i) Py(Dy) = Py(Dy) =[n+ (n,2N) + 2(n,2)]/[4n], if N is odd and

(ii) PE(D,) = Py(D,) =[3n + (n,2N)]/[4n], if N is even.

Proof. The proof follows from lemma 4.4(i), theorem 4.10 and theorem 4.11, for M = 1.

Theorem 4.15. Let Dy be dihedral group of degree n. Then,

P1(Dy) = P(Dy) = [n+ 3(n, 2)]/[4n].

Proof. The proof follows from lemma 4.4(ii) and theorem 4.14 (i) for N = 1.
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Theorem 4.16[2]. Let Dn be dihedral group of degree n, wheren > 3,d = g.c.d.(n,N) and

r =n/d. Then,

(i) Py(Dp) =1/4+1/(2n)+ 1/(4r),nisodd, N is odd,

(i) Py(Dp) =1/4+2[1/(2n) +1/(4r)], niseven, N is odd,

(iii) Py(D,) =3/4+1/(2r), riseven, N iseven,

(iv) Py(D,) =3/4 +1/(4r), risodd,N is even.

Proof. Letd=g.c.d.(n,N)andr = n/d = n/(n,N).Then (n,N) = n/r.Le N be odd. If n is odd, then (n,
2) =1and (n,2N) = (n,N) =n/r. If nis even, then (n,2) = 2and (n,2N) = 2(n,N) =2n/r. Let N be
even. Ifr =n/d = n/(n,N) is even, then (n,2N) = 2(n,N) = 2n/r. If ris odd, then, (n,2N) = (n,N) =
n/r. Then proof follows from theorem 4.14 by putting the values of (n, 2) and (n, 2N).

Theorem 4.17 [1]. Let Dn be dihedral group of degree n. Then, (i) P(Dn) = (n+ 3 )/(4n), if nis odd and
(if) P(Dn)=(n + 6)/(4n), if n is even.

Proof. Let n be odd, then (n, 2) = 1. Let n be even, then (n,2) = 2. Then the proof follows from theorem
4.15 by putting the values of (n, 2).

Theorem 4.18 [6,7]. Let D4 be dihedral group of degree 4. Then,

(i) Pn(Ds4)=5/8,if Nisodd and

(i)  Pn(D4)=1, if Niseven.

Proof. Letn=4.Then (n, 2) = (4,2) = 2. If Nis odd, then (n, 2N) = (4, 2N) = 2. If N is even, then (n, 2N) =
(4, 2N) = 4. Then from theorem 4.14 (i, ii), We get Pn(D4) = 5/8, if N is odd and Pn(D4) =1, if N is even.

5. The Relative (N,M)-th Commutativity Degree Of Dihedral Groups

Definition 5.1. The relative (N,M)-th commutativity degree

PY(G, G) of a finite group G is defined by

PY (G, G) = P(GN,GM) = |[{(x,y) € G x GM|xy = yx}|/(IGV||GM]), for positive integers N and M. Then
PY'(G, G) is the probability that a random element of GV commutes with a random element of G™.

Definition. 5.2. The commutativity set C(4A x B) of (A X B) subset of D,, X D,, is defined by

C(Ax B) = {([r], [s]) € Ax B|[r].[s] = [s].[r]}.
Lemma 5.3. The relative (N,M)-th commutativity degree of dihedral group D is given by

PY'(Dy, D) = [C(ND,, X MD)|/(IND,|IMD,),
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where We define KA = AX the set of distinct elements of K-th power of elements of A, for any subset A of D,,.
Proof. From definition 5.1, for G = D, We get PY'(D,) = |{([r], [s]) € ND,, x MD,,|[r]. [s] = [s].[r]}|/
(IND,|[MDy]).

From definition 5.2, for A=ND,, and B=MD,, , We get C(ND,, x MD,) = {([r], [s]) € ND, X MD,|[r].[s] =
[s].[r]}. Then We get lemma 5.3.

Lemma 5.4. If Dy is dihedral group of degree n. Then,

(i)  PN(Dn,Dy) = Py(Dy, Dp), and

(i) P{(Dp,Dy) = P{(Dy) = P(Dy).

Proof. The proof follows from definition (2.2, 2.5, 4.1, 5.1) for G = D,,.

Lemma 5.5. Let E and O be the sets of even and odd elements of D, respectively. If K is any positive
integer and KE = {K[2t]|[2t] € E}, Then,

(i) |KE|=n/(n,K),and

(i) |C(KE x 0)| =|C(0 x KE)| = [(n, 2K)n]/(n, K).

Proof. Let [2r],[2t]€e E. We define a relation ~ on E by [2r]~[2t]< K[2r] = K[2t]. Then it is easy to see
that ~ is an equivalence relation on E and decomposes E into disjoint equivalence classes. Let [2r] be the class
containing [2r]. Then [2r] = {[2t] € E|K[2t] = K[2r]}. Then from lemma 3.19 (i, iv), We get [2r] =
{[2t] € E|K[2(t — )] = [0]}. Then from lemma 4.7, We get |[2r]| = (n, K). Let there be [ distinct classes.
Then, I(n,K) = |E|. Then from lemma 3.18 (iv), We get [(n,K) = n, implies [l = n/(n,K). If [2t],[2s] €
[27], then K[2t] = K[2s] and so one element of KE will be obtained from all the elements of one class. Then
it follows that |[KE| =1 =n/(n,K), Which is lemma 5.5(i).

Let P = {[2t] € E|K[2t].[2r + 1] = [2r + 1]. K[2t], for some [2r + 1] € 0}. Then using definition 3.8 (i, ii)
and lemma 3.19 (i, ii), We get P = {[2t] € E|2K[2t] = [0]}. Then from lemma 4.7, We get P =
{[2vc]|0 < v <p,p = (0, 2K),c =n/p} and |P| = (n, 2K), implies P is independent of [2r+1], implies,
K[2t].[2r + 1] = [2r + 1].K[2t], V [2t] € P,V [2r + 1] € 0. Then it follows that every element of KE
obtained from P will commute with all n odd elements of O. Let [2t] € P and [2s] € [2t]. Then,
K[2t].[2r + 1] = [2r + 1].K[2t],V [2r + 1] € 0,and K[2s] = K[2t], implies, K][2s].[2r +1] =[2r +

1].K[2s],V [2r + 1] € O,
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implies [2s] € P. Then it follows that P is union of some q equivalence classes. Then it follows that q. (n, K) =
|P| = (n,2K), implies, g = (n,2K)/(n,K). Also it follows that g elements of KE will be obtained from
elements of P and these g elements of KE will commute with all n odd elements of O. Then from definition of
P and definition 5.2, We get,

|IC(KE x 0)| = [{(Ir]. [sD € KE x O| [r].[s] =I[s].[r]}| =qn={(n,2K)/ (n,K)}.n =

{(n,2K)n}/(n, K). From definition 5.2, We get C(KE x 0) = {([r],[s]) € KE x O|[r]. [s] = [s].[r]} and
C(0 xKE) ={([s].[r]) € 0 xKE|[s].[r] = [r]. [s]}.

Then, ([r],[s]) € (KE X 0) & [r].[s] = [s].[r] © [s].[r] = [r].[s] & ([s],[r]) € C(O X KE).

Then it follows that |C(0 x KE)| = |C(KE x 0)| = {(n, 2K)n}/(n, K), which is lemma 5.5 (ii).

Lemma 5.6. Let E and O be the sets of even and odd elements of Dy, respectively. Then,

(i) |C(KE x LE)| = (n®)/{(n,K)(n, L)}, for any positive integers K and L, and

(i) |C(0x0)| =(n2)n.

Proof .

(i)  From definition 5.2, We get C(KE x LE) = {([r],[s]) € KE X LE|[r].[s] = [s].[r]}.

From lemma 3.19 (i) it follows that elements of KE and LE are always even for any K and L. From
definition 3.8(i), it follows that any two even elements will always commute. Then it follows that
|C(KE x LE)| = |KE||LE|.

Then from lemma 5.5(i), We get, |C(KE X LE)| = {n/ (n,K)}.{n/ (n,L)} = (n®>)/{(n,K)(n,L)}.
(i) From definition (4.2, 5.2), We get

C1(0x0)=C(0x0)={(r],[s) € 0 x0l[r].[s] = [s].[r]}. Then, using lemma 4.9 We get,
|C(0x0)|=]|Cl0x0)|=mn2n.

Lemmab5.7. Let E and O be the sets of even and odd elements of Dn respectively.

Let KE = {K[2t]|[2t] € E}and LO = {L[2r + 1]|[2r + 1] € O}. Then,

(i)  [0] € KE, for any integer K,

(i) LO =0,ifLisodd integer,

(ili) LO ={[0]}, if L is even integer,

(iv) KE N O =@ = null, for any integer K, and

(v) |KEUO|={n/(nK)}+n,forany integer K.
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Proof.

(i) From lemma 3.18(i), We get [0] € E.Then using lemma 3.19(i), We get K[0] = K[2(0)] =
[K (2(0))] = [0] € KE.

(i) LetL beoddand [2r + 1] € 0. Then from lemma 3.19(iii), We get L[2r + 1] = [2r + 1]. Then
LO ={L[2r +1]I[2r + 1] € 0} = {[2r + 1]|[2r + 1] €0} =0

(iii) Let L be even and [2r+ 1] € 0. Then from lemma 3.19(ii), We get L[2r + 1] =[0]. Then
LO = {L[2r + 1]|[2r + 1] € 0} = {[0]|[2r + 1] € 0} = {[0]}.

(iv) From lemma 3.19(i), it follows that elements of KE = {K[2t]|[2t] € E} = {[2Kt]|[2t] € E} are even.
But elements of O are odd. Therefore KE N 0 = @ = null.

(v)  From(iv), Weget KE n 0 = @ soWeget |KE U O| = |KE| + |0|. Then from 3.18(iv) and lemma 5.5(i),
We get |[KE U O| = {n/(n,K)} +n.

Theorem 5.8. Let N and M both be odd. Then,
PM(Dy, D) = [n+ (n,2N)(n, M) + (n,2M)(n, N) + (n,2)(n, N)(n, M)]/[n{1 + (n, N)}{1 + (n, M)}].

Proof . Let N and M both be odd. Then using lemma 3.18(iii) and lemma 5.7(ii), We get

ND, = NEUNO = NEUO and MD,, = ME U MO = ME U 0. Then using lemma 5.7 (v), We get |[ND,,| =

{n/(n,N)} +nand |MD,,| = {n/(n, M)} + n. From lemma 5.7(iv), it follows that any two of NE x ME, NE X

0,0 x ME and O x O are disjoint. Then using definition 5.2, We get |[C(ND,, X MD,,)| = |C{(NE U 0) X

(ME U 0)}| = |C(NE X ME)| + |C(NE x 0)| + |C(0O x ME)| + |C(O x 0)|. Then using lemma 5.5 (ii) and

lemma 5.6(i, i), We get |C(ND, X MD,)| = (n?)/{(n,N)(n, M)} + {(n, 2N)n}/

(n,N) +{(n,2M)n}/(n, M)+ (n,2)n. Then using lemma 5.3 We get P{(D,,D,) = |C(ND,, x MD,)|/

(INDy|IMDy])

= [(*)H(n, N) (n, M)}+{(n, 2N) n}/ (n, N)+ {(n, 2M) n}/(n, M)+(n, 2) n]/ [{n/(n, N)+n}H{(n/(n, M)+n}]

=n+ (M 2N)(n,M) + (n,2M) (n,N) + (n,2)(n, N )(n,M)] / [n{1 + (n, N)}{1 + (n, M)}].

Theroem 5.9.  Let N be even and M be odd. Then,

Py (Dn, D) = [n+ (n, 2N)(n, M)]/ [n{1 + (n, M)}].

Proof. Let N be even and M be odd. Then using lemma 3.18(iii) and lemma 5.7(i, ii, iii), We get

ND,, = NE UNO = NE U{[0]} = NE and MD,, = ME U MO = ME U 0.
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Then using lemma 5.5(i) and lemma 5.7(v), We get |[ND,,| = |INE| =n/(n,N) and |MD,| = |[MEUO| =
n/(n, M) + n. From lemma 5.7(iv), it follows that NExXME and NExO are disjoint. Then using definition 5.2,
We get |C(ND,, x MD,))| = |C{NE x (ME U 0)}|

= |C{(NE x ME) U (NE x 0)}| = |C(NE x ME)| + |C(NE x 0)|.

Then using lemma 5.5(ii) and lemma 5.6(i), We get

|C(ND,, X MDp)| = (n*)/{(n, N)(n, M)} + {(n, 2N)n}/(n, N).

Then using lemma 5.3, We get P (D, D,,) = |C(ND, x MD,)|/(|(ND,||MD,|) =

[(n®)/{(n, N)(n, M)} + {(n, 2N)n}/(n, N)]/[{nn/ (n, N)}{n/(n, M) + n}] =

[n+ (n, 2N)(n,M)] / [n{1 + (n, M)}].

Theorem 5.10. Let N be odd and M be even. Then,

Py (Dn, Dn) = [n+ (n,2M)(n, N)]/[n{1 + (n, N)}].

Proof. Let N be odd and M be even. Then from lemma 3.18(iii) and lemma 5.7 (i, ii, iii), We get ND,, =
NE UNO = NE U O and MD,, = ME U MO = ME U {[0]} = ME. Then from lemma 5.5(i) and lemma 5.7(v)
Weget IND,| = INEU 0| = {n/(n,N)} +nand |MD,| = |[ME| = n/(n,M). From lemma 5.7(iv), it follows
that NE x ME and O x ME are disjoint. Then using definition 5.2, We get |C(ND,, X MD,;)| = |C{(NE U 0) X
ME}| = |C{(NE x ME) U (0 x ME)}|

=|C(NE x ME)| + |C(0 x ME)|. Then using lemma 5.5 (ii) and lemma 5.6(i), , We get |C(ND,, X MD,,)| =
(m*)/{(n, N)(n, M)} + {(n, 2M)n} / (n, M).

Then using lemma 5.3, We get P{(D,,, D)) = |C(ND,, x MD,))|/(IND,||IMD,|) =

[(n®)/{(n, N)(n, M)} + {(n, 2M)n}/ (n, M)]/[{n/(n, N) + ) H{n/(n, M)}]

=[n+ 1 2M)(n,N)] / [n{1+ (n,N)}].

Theorem 5.11. Let N and M both be even. Then, P¥(D,,D,,) = 1.

Proof. Let N and M both be even. Then from lemma 3.18(iii) and lemma 5.7(i, iii), We get NDn= NE U NO =
NE U {[0]} = NE and MDn=ME U MO = ME U {[0]} = MEU{[0]}= ME. Then using lemma 5.6(i), We get
|C(NDy, X MDy)| = |C(NE x ME)| = (n*)/{(n, N)(n, M)}.

Using lemma 5.5(i), We get [(ND,)| = [NE| = n/(n,N) and |(MD,,)| = |[(ME)| = n/(n, M). Then using
lemma 5.3, We get Py/(Dy,Dn) = |C(NDy x MD)|/(INDIIMD,]) = [(n®)/{(n, N)(n, M)}] [ [{n/

(n, N)H{n/(n, M)}] =1.
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Theorem 5.12. The relative N-th commutativity degree of dihedral group of degree n is given by
(i)  Py(D,, D) = Py(Dy,Dy) = [n+ (n,2N) + 2(n,2)(n,N)]/[2n{1 + (n,N)}], if N is odd, and
(ii) PE(D,,D,) = Py(D,,D,) = [n+ (n,2N)]/[2n], if N is even.
Proof. If M =1, then (n, M) =1 and (n, 2M) = (n, 2). Then proof follows from Theorem (5.8, 5.9).
Theorem 5.13 [10]. Let D3 be dihedral group of degree 3, then for K, Ne Z*, where K=0,1,2..., the relative
N-th commutativity degree of D3, Py (D3, D3) is given as follows,
(i) Py(Ds,D3) = 1/2; N = 1+ 2K,
(i) Py(Ds3,D3) = 2/3; N = 2+ 6K,N = 4+ 6K,
(iii) Py(D3,D3)=1; N = 6 + 6K.
Proof. Letn=3.IfN = 1+ 2K, then(3,2N) = (3,N) and (3,2) = 1. Then from theorem 5.12(i) ,
we get Py(D3, D3) = [3 4 (3,2N) + 2(3,2)(3, N)]/[2Q){1 + 3, N)}] = [3+ (3, N) + 2(3,N)]/ [2(3){1 +
G,N} =[3{1+ B, N} /[2B3){1+ (3,N)}] = 1/2. If N =2+ 6K,4 + 6k, then, (n,2N) = (3,2N) =
1. Then from theorem 5.12 (ii), We get Py (D3, D3)=[3 + 1]/[2(3)] = 2/3.If N = 6 + 6K, then (n,2N) =
(3,2N) = 3. Then, from theorem 5.12 (ii), We get Py(Ds, D3) = [3 + 3]/[2(3)] = 1.
Remark. In [10], Py(D5, D3) has been denoted by Py(Ds). We can obtain all the theorems of [10] from
theorem 5.12 (i,ii).
Theorem 5.14. Let D4 be dihedral group of degree 4. Then,
(i)  Py(D4 D,) =Py(D,) = 5/8, If Nisoddand
(ii) Py(D4,D,) =Py(D,) =1if Niseven.
Proof. Letn=4.If Nisodd, then (n, 2N) =2, (n, N) = 1 and (n, 2) = 2. Then from theorem 5.12(i) and theorem
4.14(i), We get Py(D,, D,) =Py(D,) = 10/16 = 5/8. If N is even, then (n, 2N) = 4. Then from theorem 5.12 (ii)
and theorem 4.14(ii), We get Py(D,,D,) = Py(D,) =8/8 = 1.

6. The Subgroups Of Dihedral Group
Definition 6.1. Let d be a positive integer such that d\n and k = n/d or kd = n. Let O be the set of odd
elements of D,, and [2t + 1],[2i + 1] € 0. We define a relation ~ on O by [2t + 1]~ [2i + 1] & 2d divides

2t+1-2i—-1)=2t+1=2rd+2i+1,forsomer € Z.
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Theorem 6.2. The relation ~ defined by definition 6.1 is an equivalence relation on O. If C4[2i + 1] is the
equivalence class by [2i + 1] € 0, then,

() Cy[2i+1]={[2rd+2i+1]|r € Z} = {[2rd + 2i + 1]|0 < r < k},

(i) |C4[2i + 1]| = k, and

(iii)  there are d distinct classes for 0 < i < d.

Proof. It is obvious that ~ is an equivalence relation on O.Then ~ decomposes O into disjoint equivalence
classes.

(i) Let C4[2i + 1] be the equivalence class by [2i + 1] € 0. Then C;[2i + 1] = {[2t + 1] € O|[2t +
1]~[2i + 1]}. Let [2t + 1] € C4[2i + 1], implies [2t + 1]~[2i + 1]. Then from definition 6.1, We get 2t +
1 =2rd+ 2i+ 1, for some r € Z, implies [2t + 1] = [2rd + 2i + 1], for some r € Z. Let r € Z. Then 2d
divides (2rd + 2i + 1 — 2i — 1). Then from definition 6.1, We get [2rd + 2i + 1]~[2i + 1], implies [2rd +
2i + 1] € C4[2i + 1]. Then it follows that C4[2i + 1] =

{[2rd + 2i + 1]|r € Z}. Let 0 < 1y, 1, < k, 1y # 1y implies, 0 < 21yd, 21,d < 2kd, 2ryd # 2r,d. Since kd =
n, it follows that 0 < 2r,d, 2r,d < 2n,2rd # 2r,d. Then from lemma 3.6(ii), We get [2r,d] # [2r,d]. Then
from lemma 3.19 (iv), We get [2r;d + 2i + 1] # [2r,d + 2i + 1]. Let r € Z. Then by division algorithm We
can write r = gk + 1,0 <1y <k, implies 2rd + 2i + 1 = 2qkd + 2r;d + 2i + 1 = 2nq + 2r;d + 2i + 1.
Then from lemma 3.6 (iii), We get, [2rd + 2i + 1] = [2nq + 2rn,d + 2i + 1] = [2rn,d + 2i + 1],0 < r, < k.
Then it follows that C;[2i + 1] = {[2rd + 2i + 1]|r € Z} = {[2rd + 2i + 1]|0 < r < k}and [C4[2i + 1]| =
k.

(i) It follows from proof of(i).

(iii)  Let there be [ distinct classes. From (ii) it follows that each class has k elements. Then, We get lk = |O|.
Then from lemma 3.18 (iv), We get Ik = n, impliesl = n/k = d. Let [2t + 1] € O. By division algorithm We
canwritet =qd +i, 0 <i <d,implies2t +1 = 2qd + 2i + 1,0 < i < d. Then from definition 6.1, We get
[2t + 1]~[2i + 1],0 < i < d, implies C4[2t + 1] = C4[2i + 1], 0< i < d. Then (iii) follows.

Theorem 6.3. The set of even elements of a subgroup H of D,, is a subgroup of H.

Proof. Let H be a subgroup of D,,. Let T be the set of even elements of H. Then [0] € H, implies [0] € T. Let

[2r],[2t] € T. implies [2r],[2t] € H implies, [2r].[2t] € H. From definition 3.8(i), We get [2r].[2t] =
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[2r + 2t] = [2(r + t)] which is even element. Then it follows that [2r].[2t] € T. Hence T is closed and
finite. Therefore T is a subgroup of H.

Theorem 6.4. Let [2r + 1],[2r] € D,. Then,

(1) O([2r + 1]) = order of [2r + 1] = 2, and

(i) o(2r]) =n/(nr), r=1

Proof. (i) From definition 3.8(ii), We get, 1[2r + 1] = [2r + 1],2[2r + 1] = [2r + 1].[2r + 1] = [-2r —
1+ 2r + 1] = [0], implies O([2r + 1]) = 2.

(i) LetO([2r]) = m. Then m is the least positive integer such that m[2r] = [0], implies [2mr] = [0] by
lemma 3.19(i). Then from definition 3.1, We get 2mr = 2nq for some q € Z, implies m = (nq)/r where q
is the least positive integer such that r divides nq. Let p = (n,r). Then We can write n = pl and r = pa where
[ and a are relatively prime. Then m = (lq)/a where q is the least positive integer such that a divides lq. Then
it follows that g = a. Thenm =1l =n/p = n/(n,r).

Theorem 6.5. Let[2c]€D,, 1 <cand H = {r[2c]lr € Z}. Let k =n/(n,c) or k(n,c) =n. Then H is
cyclic subgroup of order k and index 2(n,c) given by H ={r[2(n,c)] =[2r(n,c)]lr e Z} =
{r[2(n,c)] = [2r(n,¢)]|0 < r < k}, where 2(n, ¢) is the least positive even integer such that [2(n, c)] € H.
Proof. Let [2c] € D,,1 < c and H = {r[2c]|r € Z}. Then it is obvious that H is a cyclic subgroup
generated by [2c]. From theorem 6.4(ii), We get O([2c]) = n/(n,c). Let k =n/(n,c) or k(n,c) = n. Then
from theorem 6.4 (ii), We get 0([2(n,¢)] =n/(n, (n,c)) =n/(n,c). Let c= (n,c)a. Then a and k are
relatively prime. Then by Euclid division algorithm, there exists integers x and y such that ax + ky = 1,
implies, ax =1 — ky. Let r = k 4+ x. Then from lemma 3.19(i), We get r[2c] = [2rc] = [2(k + x)c] =
[2(k + x)(n,c)a] = [2k(n,c)a + 2x(n,c)a] = [2na + 2(n,c)(1 — ky)] = [2na + 2(n,c) —
2(n,c)ky] = [2na + 2(n,c) — 2ny] = [2n(a — y) + 2(n,c)] = [2(n, ¢)], by lemma 3.6(iii). Then it follows
that [2(n,c)] € H. Since O0([2c]) =0(2(n,c)]) =k, We get that H={r[2(nc)]lreZz}=
{r[2(n,c)]|0 <r < k},|H| =k, index H = 2n/k = 2(n,c). Since k(n,c) = n, it follows that 2(n, c) is the
least positive even integer such that [2(n, ¢)] € H. From lemma 3.19(i), We get r[2(n, ¢)] = [2r(n, ¢)].

Theorem 6.6. Let H be a subgroup of D,, . Let H contain even elements only and 2d be the least positive
even integer such that [2d] € H. Then d\n. Let k = n/d orkd = n. Then H is a cyclic subgroup of index 2d
and order k given by

H = {r[2d] = [2rd]|r € Z} = {r[2d] = [2rd]|0 < r < k}.
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Proof. Let [2t] € H. Then by division algorithm We can writet =rd + i, 0 <i < d, implies, 2t — 2rd =
2i, 0 <i<d. Now [2t],[2d] € H, implies [2t], r[2d] € H, implies [2t], [2rd] € H, by lemma 3.19(i).
Then [2t].[2rd]™' € H. Then from lemma 3.13(i) and definition 3.8 (i), We get [2¢t].[2rd]™! =
[2t].[—2rd] = [2t — 2rd] € H, implies [2i] € H. Since 2d is the least positive even integer such that [2d] €
H and [2i] € H such that 0 < 2i < 2d, it follows that 2i = 0. Then [2t] = [2rd] = r[2d]. Since H is
subgroup, so r[2d] € HVr € Z. Therefore, H = {r[2d]|r € Z}. Let k = n/(n,d) or k(n,d) = n. Then from
theorem 6.5 it follows that H is a cyclic subgroup of index 2(n, d) and order k given by H = {r[2(n,d)] =
[2r(n,d)]|r € Z} ={r[2(n,d)] = [2r(n,d)]|0 < r < k}. where 2(n, d) is the least positive even integer such
that [2(n, d)] € H.

Therefore 2(n,d) = 2d, implies (n,d) = d, Then it follows that kd = n and d\n.

Note. If H = {[0]}, then 2n is the least positive even integer such that [2n] € H.

Theorem 6.7. Let H be a subgroup of D,, and let H contain both even and odd dements.

Let 2d be the least positive even integer such that [2d] € H. Then d\n. Letk = n/d orkd = n. Then His a
dihedral subgroup of index d and order 2k given by H = {r[2d]}|r € Z} U C4[2] + 1] = {[2rd], [2rd + 2L +
1]|r € Z} = {[2rd], [2rd + 21 + 1]|0< r < k}.

Where [21 + 1] is any odd element of H. In particular there exists [2i + 1] e Hsuch that0 <i < dand H =
{[2rd],[2rd + 2i + 1]|0 < i < k}.

Proof. Let H be a subgroup of D,, and let H contain both even and odd elements. Let T be the set of even
elements of H. Then from theorem 6.3 it follows that T is a subgroup of H. Then T is also a subgroup of D,,.
Let 2d be the least positive even integer such that [2d] € T. Then from theorem 6.6 it follows that d\n . Let
k = n/d or kd = n. Then from theorem 6.6 it follows that T is a cyclic subgroup of index 2d and order k and
T ={r[2d]|r € Z} = {[2rd]|0 < r < k}.

Let [2l+1] be any odd element of H . Then from theorem 6.2, We get Cy[2l+1] =
{[2rd + 2l + 1]|[r e Z} = {[2rd + 2l + 1]|0 < r < k} and |C4[21 + 1]| = k. Let [2t + 1] € H. Then[2] +
1].[2t + 1] € H. Then from definition 3.8(ii),We get [—2[ + 2t] € H, implies [2t — 2] € T, implies [2t —
2l] = [2rd] for some r € Z. Then from lemma 3.19(iv), We get [2t + 1] = [2rd + 21 + 1], implies
[2t + 1] € C4[21 + 1]. Now [2d],[2] + 1] € H, implies [2] + 1].r[2d] e HV r € Z. Then from lemma

3.19(i) and definition 3.8(i), We get [2rd + 2l + 1] e HV r € Z. Then it follows that H = T U C,[21 + 1] =
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{[2rd]lr € ZYU C4[21 + 1] = {[2rd], [2rd + 2l + 1]|r € Z} = {[2rd],[2rd + 2l + 1]|0 <r <k} and

|H| = k + k = 2k. By division algorithm, We canwrite l = rd +i,0 <i < d, implies2l + 1 = 2rd + 2i +

1. Then from definition 6.1, We get [2] + 1]~[2i + 1], implies C4[2] + 1] = C4[2i + 1]. Then it follows that

H = {[2rd],[2rd + 2i + 1]|0 <r < k},[2i + 1] € H,0 < i < d. Let D, be dihedral group of degree k. Let

[s] € Di. Then [s]will be denoted by [s]. Therefore, D, = {[27];, [2r + 1];|0 <r < k}. We define a

mapping f:Dy, — H by f([2r],) = [2rd] and f([2r + 1];) =[2rd + 2i + 1]. Then using definition 3.8 (i, ii)

and definition of f We get the following:

(i)

(i)

(iii)

(iv)

f(2r]k. [2t]x) = f([2r + 2t],) = [(2r + 2t)d]

= [2rd + 2td] = [2rd]. [2td] = f([2r]x)f ([2t]k),

f2r]e. [2t + 1)) = f([—2r+ 2t + 1)) = f([2(=r +t) + 1]1)

=[2(-r+t)d +2i + 1] = [-2rd + 2td + 2i + 1] = [2rd].[2td + 2i + 1]

= f([2rli0f ([2t + 1],

f2r+ 1], 2tl) = f(2r + 1+ 2t],) = f([2r + ) + 1)) = [2(r + )d + 2i + 1] = [2rd +
2td + 2i + 1] = [2rd + 2i + 1].[2td] = f([27 + 11)f([2t]),

f2r + 1. [2t + 1) = f([=27 + 2t],) =f ([2(=r + D)

=[2(-r + t)d] = [-2rd — 2i — 1 + 2td + 2i + 1]

= [2rd + 2i + 1].[2td + 2i + 1] = f([2r + 1])f([2t + 1],)-

Then it follows that f is homomorphism. Also it is obvious that f is one-one and onto. Then it follows that

D, = H and hence H is a dihedral subgroup.

Theorem 6.8. Every subgroup of D,, is cyclic or dihedral. A complete listing of all subgroups of D,, is

as follows:

(i)

(ii)

For each d such that d\n and k = n/d or kd = n there exists exactly one cyclic subgroup of index 2d
and order k given by

cp ={r[2d]|r € Z} = {[2rd]|0 < r < k},

where 2d is the least positive even integer such that [2d] € C}}.

For each d such that d\n and k = n/d there are exactly d dihedral subgroups of index d and order 2k
given by

D ={r[2d]|r € Z} U C4[2i + 1]
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= {[2rd], [2rd + 2i + 1]|r € Z}
= {[2rd], [2rd + 2i + 1]|0 < r < k},
where 2d is the least positive even integer such that [2d] € Dy} and [2i + 1] is any odd element of O

or D,, Butonly d subgroups will be obtained for 0 < i < d.

Proof . Let H be a subgroup of D,,. Since [0] € H and [0] is even element, so there are only two cases. Either

H contains only even elements or H contains even and odd elements both. Then from theorem 6.6 and

theorem 6.7 it follows that H is either cyclic or dihedral and H will be obtained from (i) and (ii) for some d

such that d\n.So all subgroups of D,, will be obtained from (i) and (ii) for different values of d such that

d\n.

(i)

(i)

Let d\n and k = n/d or kd = n. Let C}! = {r[2d]|r € Z}. Since d\n, implies (n,d) = d and

n/(n,d) = n/d = k. Then from theorem 6.5, We get (i).

Letd\nand k =n/d or kd = n. Let T = {r[2d]|r € Z}. Then form(i) it follows that

T ={r[2d] = [2rd]|0 < r < k}, |T| = k and 2d is the least positive even integer such that [2d] € T.
Let [2i + 1] € O. Then from theorem 6.2, We get C,4[2i + 1] = {[2rd + 2i + 1]|r € Z} =

{[2rd + 2i + 1]|0 <r < k}and

|C4[2i + 1]| = k. Let D} =T UCy[2i +1] = {[2rd],[2rd + 2i + 1]]0 < r < k} =
{[2rd], [2rd + 2i + 1]|r € Z}. Then |D}}| = |T| + |C4[2i + 1]| = k + k = 2k.

Let [2rd],[2td] € Di}. Then from definition 3.8 (i). We get [2rd]. [2td] = [2rd + 2td] = [2(r +
t)d] € D. Let [2rd], [2td + 2i + 1] € D;}. Then form definition 3.8 (i, ii), We get [2rd].[2td +
204+ 1] =[2(t —r)d+2i + 1] € D}} and [2td + 2i + 1].[2rd] = [2(t + r)d + 2i + 1] € D}}. Let
[2rd + 2i + 1],[2td + 2i + 1] € D}}. Then from definition 3.8 (ii), We get [2rd + 2i + 1].[2td +
2i + 1] = [2(t — r)d] € D}. It follows that D;} is closed and finite subset of D,,. So D}} is a subgroup
of index d and order 2k. From theorem 6.7 it follows that D;} is dihedral. From theorem 6.2, it follows

that there are d distinct classes C4[2i + 1] for 0 < i < d. So, We get d distinct dihedral subgroups.

Theorem 6.9. A complete listing of all normal subgroups of D,, is as follows:

(i)

For each d such that d\n and k = n/d or kd = n there exists exactly one cyclic normal subgroup of

index 2d and order k given by
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Cp = {r[2d]|r € Z} = {[2rd]|0 < r < k}, where 2d is the least positive even integer such that [2d] €
Cr.

(i) If nis odd there exists exactly one dihedral normal subgroup namely D,, itself.

(iii)  If nis even there exists exactly three dihedral normal subgroups given by
@ D, ={[2r],[2r + 1]]0 < r < n}, of order 2n,
(b) D,'}/z = {[4r], [4r + 1]|r € Z} = {[4r],[4r + 1]|0 < r < n/2}, of order n, and
(© D,'}/z = {[4r],[4r + 3]|r € Z} = {[4r], [4r + 3]|0 < r < n/2}, of order n.

Proof.  All subgroups of D,, are given by theorem 6.8(i,ii). Let d\n and k = n/d or kd = n. Then from
theorem 6.8(i), We get Ci} = {r[2d]|r € Z} = {[2rd]|0 < r < k}. Let [2rd] € C}} and [2t] € D,. Then
using definition 3.8(i) and lemma 3.13(i), We get [2¢]. [2rd]. [2t]! = [2t + 2rd — 2t] = [2rd] € C}}.
Let [2t + 1] € D,, and [2rd] € C}}. Then using definition 3.8 (ii) and lemma 3.13 (ii), We get
[2¢t + 1].[2rd].[2t + 1]7t = [-2t — 1 = 2rd + 2t + 1] = [-2rd] = [2(-7)d] € C}}. Then it follows
that €7} is normal subgroup of D, and We get(i). From theorem 6.8(ii), We get D} =
{[2rd],[2rd + 2i + 1]|r € Z} = {[2rd], [2rd + 2i + 1]|0 < r < k} = {[2rd]|r € Z} U C4[2i +
11,0 <i<d and |D}|= 2k. Let [2t],[2t + 1] € D,, and [2rd],[2rd + 2i + 1] € D;}. Then using
definition 3.8(i,ii) and lemma 3.13(i,ii), We get [2¢].[2rd]. [2t]" = [2t + 2rd — 2t]= [2rd] € D},
[2t + 1].[2rd].[2t + 1]7* = [-2t—1-2rd + 2t + 1] = [2(-r)d] € D}, [2t].[2rd + 2i +
1].[2t]7 = [=2t + 2rd + 2i + 1 — 2t] = [—4t + 2rd + 2i + 1] and [2t + 1].[2rd + 2i + 1].[2t +
1]71 = [4t — 2i + 1 — 2rd]. D will be normal subgroup if and only if [—4t + 2rd + 2i + 1], [4t —
2i+1—2rd] € C4[2i + 1] forevery 0 < t < n for every re Z.Then from theorem 6.1, We get that D}}
is normal subgroup if and only if 2d\(—4t + 2rd + 2i + 1 —2i — 1) and 2d\(4t — 2i + 1 — 2rd —
2i —1) forevery 0 <t <nand for every r € Z, if and only if 2d\4(—t) and 2d\4(t — i) for every
0<t<mn, if and only if d\2. If n is odd, then d\n and d\2, implies d = 1. Then 0 <i <
d, implies 0<i<1 , implies i = 0. Then k=n/d=n/l=n and D} =D} =
{[2r], [2r + 1]|0 < r < n} = D, and We get(ii). If n is even, then d\n and d\2, implies d = 1, 2. For
d =1, We get D} = D} = {[2r],[2r + 1]|0 < r < n} =D,, which is (iii)(@). If d = 2, Then k = n/2
and 0 <i<d, impliesO0 <i < 2, implies i =0,1. Fori =0,

We get Dy = Dy, = {[47], [4r + 1]|0 <7 < n/2}

JETIR2210372 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | d481


http://www.jetir.org/

© 2022 JETIR October 2022, Volume 9, Issue 10 www jetir.org (ISSN-2349-5162)

which is (iii)(b). For i = 1, We get Dy’ = Dy, = {[4r], [4r + 3]|0 < r < n/2} which is (iii)(c).

Theorem 6.10. Let Z(D,;) denote the center of D,,(n = 3). Then,

(i) Z(D,) = {[0]}, if nis odd, and

(i)  Z(D,) = {[0], [n]}, if nis even.

Proof. Let [2t + 1] € D,. Let [2t + 1].[2] = [2]. [2t + 1].

Then using definition 3.8 (i, ii), lemma 3.19(iv) and definition 3.1, We get [2t + 3] = [2t — 1], implies, [4] =
[0], implies 2n\4, implies, n = 1,2. So it follows that [2t + 1] ¢ Z(D,,) if n = 3. Let [2t], [2r] € D,,. Then
from definition 3.8(i),We get [2t].[2r] = [2t + 2r] = [2r].[2t]. Let [2r + 1] € D,, and [2t].[2r + 1] =
[2r 4+ 1].[2t]. Then using definition 3.8(i,ii) and lemma 3.19(i,iv), We get [2r + 1 — 2t] = [2t + 2r + 1],
implies [4t] = [0], implies 2[2t] = [0]. Then using lemma 4.7, We get [2t] = [2vc], 0 <v <p, p = (n,2)
and ¢ = n/p. If n is odd, then p = (n,2) = 1. Then [2t] = [0]. Then We get (i). If n is even, then p =
(n,2) = 2. Then [2t] = [2vc],0 < v < 2,c = n/2, implies [2t] = [0], [n]. Then We get (ii).

Theorem 6.11. The commutator subgroup of D, is given by D, ={r[2(n,2)]|lr € Z} =
{[2r(n,2)]|0 <r <n/(n,2)}.

Proof. Let [2t], [2t + 1],[2r],[2r + 1] € D,,. Then using definition 3.8(i,ii) and lemma 3.13(i,ii), We get
[2t].[2r]. [2¢t] 7t [2r]7t = [0], [2t]. [2r + 1].[2¢] "% [2r + 1]

= [0],[2r + 1].[2t].[2r + 1] L. [2t]7 = [-4t] and [2t + 1].[2r + 1].[2t + 1] L [2r + 1]7Y = [4(r —
t)]. Since [2t],[2r] € D,,, Vt,r €Z. So, if H is the set of all commutators of D,, then H =
{[0], [—4t], [4(r — t)]|r,t € Z}. Then it follows that H = {r[4]|r € Z} = {r[2(2)]|r € Z}. Then from theorem
6.5, it follows that H is a cyclic subgroup of index 2(n, 2) and order n/(n, 2) given by

H = {r[2(n,2)]|r € Z}={[2r(n, 2)]|0 < r < n/(n,2)}.

Since the commutator subgroup D,, is the subgroup generated by the commutators. Therefore D,, = H.
Theorem 6.12. Let k be a positive integer and H = {[2t] € D,|k[2t] = [0]}. Then H is a cyclic subgroup
of order (n, k) and index (2n) /(n, k) given by

H={r[2c]lr€Z, c=n/(nk)} ={[2rc]|0 <r < (n, k), c =n/(nk)}.

Proof. Let H = {[2t] € D,|k[2t] = [0]}. Then using lemma 4.7, We get

H = {[2rc] =r[2c]|0 < r < (n,k),c =n/(n,k)}. Since c(n, k) = n, So from theorem 6.8 (i), it follows that

H is a cyclic subgroup of index 2c = (2n)/(n, k) and order (n, k).
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Theorem 6.13. Let k be a positive integer . Let kE
={k[2t]|[2t] € E} and E}, = {[2t] € E|k[2t].[2r + 1] = [2r + 1]. k[2t],V [2r + 1] € O}. Then,
(i)  KE s acyclic subgroup of E given by
kE ={r[2(n,k)]|Ir € Z} = {[2r(n, k)]|0 < r < n/(n, k)},
|kE| = n/(n, k),
(i)  Eyisacyclic subgroup of E given by
E, ={r[2c]|0 <r < (n,2k), c=n/(n,2k)},
|Ex| = (n, 2k),
(iii)  kEj is a cyclic subgroup of KE given by
kE, = {r[2kc]|0 <r < (n,2k)/(n, k), c =n(n,k)/(n 2k)},
|kEx| = (n,2k)/(n, k),
(iv) |CE(E x 0)| =|Cf(0 x E)| = |Ex x 0| = |E¢||0] = (n, 2k)n, and
(v)  [C(kE x 0)| = |C(O X kE)| = |(kEy X 0)| = |kE;||0] = (n, 2k)n / (n, k).
Proof. Let E be the set of even elements of D,,.
Then from lemma 3.18(i) and lemma 3.19 (i), We get E = {[2r]|0 < r < n} = {r[2]|r € Z} and |E| = n.
From theorem 6.5, it follows that E is a cyclic subgroup of D,,. Let k be a positive integer and
kE = {k [2t]|[2t] €E}. Then using theorem 3.19 (i), We get kE = {t[2k]|[2t] € E or t € Z}and KE C E.
Then from theorem 6.5, it follows that kE is a cyclic subgroup and
kE = {t[2(n, k)]It € Z} = {[2t(n, k)]|0 <t <n/ (n,k)}, |kE| =n/ (n k) whichis (i).
Let E, = {[2t] € E|k[2t].[2r + 1] = [2r + 1].k[2t] V [2r + 1] € O}. Then using definition 3.8(i,ii) and
lemma 3.19 (i, iv), We get E;, = {[2t] € E|2k[2t] = [0]}. Then using theorem 6.12, it follows that E is a
cyclic subgroup of E and E, = {r [2¢]|0 < r < (n, 2k), ¢ = n/(n,2k)}, |Ex| = (n, 2k) which is (ii). Then
using lemma 3.19(i), We get
kE, = {k[2rc]|0 < 7 < (n,2k), ¢ =n/(n,2k)}={r[2kc]|0 <r < (n,2k) or r € Z, ¢ =n/(n,2k)}.
Then clearly kE, < kE. Now (n, kc) = (n, kn/(n,2k)) = (n(n,2k) / (n,2k), kn/(n,2k))
={n/ (n, 2k)}((n,2k), k)={n/(n, 2k)}(n, k) = n (n,k)/ (n,2 k), implies, n/(n,kc) = (n,2k) I (n, k).
Then from theorem 6.5, it follows that kE}, is a cyclic subgroup of kE and kEy, = {r [2n (n, k) /(n, 2k)]|0 <

r < (n,2k)/(n,k)},
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|kE,| = (n, 2k)/ (n, k) which is (iii). Using definition 4.2, lemma 4.5, (ii), |O| = n and definition of Ej; , We

get (iv). Using definition 5.2, (iii), definition of kE, definition of kE;, and |O| = n, We get (V).

Conclusion

Dihedral group D,, of degree n has a new representation as a group of residue classes. This new
representation will help us to study any property of dihedral groups. The (N, M)-th commutativity degree
PY(D,) andthe relative (N, M)-th commutativity degree P} (D,,, D,,) for all N, M and n have been obtained.
Also all subgroups, all normal subgroups, the center and commutator subgroup have been obtained.
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